ДРОБНЫЕ ЧИСЛА В ДВОИЧНОЙ СИСТЕМЕ СЧИСЛЕНИЯ
В любой системе счисления нужно уметь представлять не только целые числа, но и дробные. С математической точки зрения это ординарная задача, которая давно решена. Однако с точки зрения компьютерной техники это далеко не тривиальная проблема, во многом связанная с архитектурой компьютера. Ресурсы компьютеров не бесконечны, и основной трудностью является представление периодических и непериодических дробей. Следовательно, такие дроби следует округлять, задавать класс точности участвующих (и могущих появиться в результате вычислений!) чисел без потери точности вычислений, а также следить за тем, чтобы потеря точности не произошла при переводе чисел из одной системы счисления в другую. Особенно важно аккуратно производить вычисления при операциях с плавающей точкой.
Запишем формулу представления дробного числа в позиционной системе счисления:
Ap = an-1·p n-1 +an-2·p n-2 + . + a1·p 1 +a0·p 0 +a-1·p -1 +a-2·p -2 + . + a-m·p -m , [4.1]
В случае десятичной системы счисления получим:
24,732 = 2·10 1 +4·10 0 +7·10 -1 +3·10 -2
Перевод дробного числа из двоичной системы счисления в десятичную производится по следующей схеме:
101101,1012 = 1·2 5 +0·2 4 +1·2 3 +1·2 2 +0·2 1 +1·2 0 +1·2 -1 +0·2 -2 +1·2 -3 =45,625
Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:
Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.
Перевод целой части дает 20610=110011102 по ранее описанным алгоритмам; дробную часть умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:
.116 • 2 = 0.232 .232 • 2 = 0.464 .464 • 2 = 0.928 .928 • 2 = 1.856 .856 • 2 = 1.712 .712 • 2 = 1.424 .424 • 2 = 0.848 .848 • 2 = 1.696 .696 • 2 = 1.392 .784 • 2 = 0.784 и т.д.
Получим: 20610=11001110,00011101102
Таблицу степеней первых восьми отрицательных степеней двойки можно посмотреть в Приложении.
Перевод дробных чисел из одной системы счисления в другую
После того, как я сделал несколько калькуляторов для перевода между разными системами счисления — вот список от первой до последней версии, от самого простого к сложному: Перевод числа в другие системы счисления, Перевод из десятичной системы счисления, Перевод из одной системы счисления в другую — в комментариях стали периодически спрашивать — а что же, мол, дробные числа, как же их переводить? И когда спросили больше трех раз, я таки решил изучить этот вопрос.
Результатом стал калькулятор, который вы видите ниже, он умеет переводить и дробные числа в том числе. Как водится, для любознательных под калькулятором немного теории.
Перевод дробных чисел из одной системы счисления в другую
Исходное число
Исходное основание
Основание системы счисления исходного числа
Основание результата
Основание системы счисления переведенного числа
Точность вычисления
Знаков после запятой: 8
Рассчитать
Переведенное число
Исходное число в десятичной системе счисления
Переведенное число в десятичной системе счисления
Погрешность перевода (в десятичном выражении)
Максимальная погрешность перевода (в десятичном выражении)
Ссылка Сохранить Виджет
Теперь теория. Я, честно говоря, думал, что вопрос довольно сложный, но при ближайшем рассмотрении все оказалось проще простого. Надо было только держать в голове тот факт, что речь идет о позиционных системах счисления.
В чем тут суть? Рассмотрим на примере десятичного числа 6.125. Это дробное число в десятичной системе счисления представляется так:
Все просто, не так ли? Та же самая простота сохраняется и при записи дробного числа в любой другой системе счисления. Возьмем, например, горячо любимую каждым программистом двоичную систему и число, например, 110.001. Эта запись есть не что иное как
Да-да, число для примера было выбрано не просто так. То есть, 110.001 в двоичной системе есть 6.125 в десятичной. Принцип, я думаю, ясен.
Есть только одно но — все-таки из-за того, что здесь участвую дроби с разными знаменателями, не всегда одно и тоже число можно одинаково точно выразить в разных системах счисления. Что я имею в виду?
Возьмем, например, число . Отлично смотрится в десятичной системе счисления. Но вот если попробовать получить запись этого числа в двоичной системе счисления — будут проблемы. Попробуем, пока не устанем
Продолжать можно еще довольно долго, но уже сейчас видно, что 0.8 в десятичной системе это 0.11001100. (дальше очень много цифр) в двоичной. Если честно, то это периодическое число с перидом 1100, так что мы никогда не сможем выразить его точно в двоичной системе счисления. 110011001100. будет продолжаться до бесконечности.
Поэтому перевод дробного числа из одной системы счисления в другую чаще всего дает погрешность. Погрешность эта зависит от того, сколько разрядов мы используем для записи дробной части переведенного числа. Возьмем пример с числом 0.8 и используем для записи его двоичного представления шесть разрядов после запятой — 0.110011. Полученное число вовсе не 0.8, а 0.796875, разница при этом составляет 0.003125. Это и есть наша погрешность перевода десятичного числа 0.8 в двоичный вид при использовании шести разрядов после запятой.
Вес крайнего правого разряда (самого младшего разряда) называется разрешением (resolution) или точностью (precision), и определяет наименьшее неравное нулю число, которое может быть представлено данным числом разрядов. Для нашего примера это . При этом максимально возможная погрешность представления числа, как нетрудно сообразить, не превышает половины этого веса, или 0.0078125. Так что для 0.8 мы имеем еще и не самую плохую погрешность.
Вот, собственно, и все.
Способы перевода чисел из одной системы счисления в другую
Странно, что в школах на уроках информатики обычно показывают ученикам самый сложный и неудобный способ перевода чисел из одной системы в другую. Это способ заключается в последовательном делении исходного числа на основание и сборе остатков от деления в обратном порядке.
Например, нужно перевести число 81010 в двоичную систему:
Результат записываем в обратном порядке снизу вверх. Получается 81010 = 11001010102
Если нужно переводить в двоичную систему довольно большие числа, то лестница делений приобретает размер многоэтажного дома. И как тут собрать все единички с нулями и ни одной не пропустить?
В программу ЕГЭ по информатике входят несколько задач, связанных с переводом чисел из одной системы в другую. Как правило, это преобразование между 8- и 16-ричными системами и двоичной. Это разделы А1, В11. Но есть и задачи с другими системами счисления, как например, в разделе B7.
Для начала напомним две таблицы, которые хорошо бы знать наизусть тем, кто выбирает информатику своей дальнейшей профессией.
Таблица степеней числа 2:
2 1 | 2 2 | 2 3 | 2 4 | 2 5 | 2 6 | 2 7 | 2 8 | 2 9 | 2 10 |
2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 |
Она легко получается умножением предыдущего числа на 2. Так, что если помните не все эти числа, остальные нетрудно получить в уме из тех, которые помните.
Таблица двоичных чисел от 0 до 15 c 16-ричным представлением:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
Недостающие значения тоже нетрудно вычислить, прибавляя по 1 к известным значениям.
Перевод целых чисел
Итак, начнем с перевода сразу в двоичную систему. Возьмём то же число 81010. Нам нужно разложить это число на слагаемые, равные степеням двойки.
- Ищем ближайшую к 810 степень двойки, не превосходящую его. Это 2 9 = 512.
- Вычитаем 512 из 810, получаем 298.
- Повторим шаги 1 и 2, пока не останется 1 или 0.
- У нас получилось так: 810 = 512 + 256 + 32 + 8 + 2 = 2 9 + 2 8 + 2 5 + 2 3 + 2 1 .
Способ 1: Расставить 1 по тем разрядам, какие получились показатели у слагаемых. В нашем примере это 9, 8, 5, 3 и 1. В остальных местах будут стоять нули. Итак, мы получили двоичное представление числа 81010 = 11001010102 . Единицы стоят на 9-м, 8-м, 5-м, 3-м и 1-м местах, считая справа налево с нуля.
Способ 2: Распишем слагаемые как степени двойки друг под другом, начиная с большего.
2 9 = | 1000000000 | (1 и девять нулей) + |
2 8 = | 100000000 | (1 и восемь нулей) + |
2 5 = | 100000 | (1 и пять нулей) + |
2 3 = | 1000 | (1 и три нуля) + |
2 1 = | 10 | (1 и один ноль) |
А теперь сложим эти ступеньки вместе, как складывают веер: 1100101010 .
Вот и всё. Попутно также просто решается задача «сколько единиц в двоичной записи числа 810?».
Ответ — столько, сколько слагаемых (степеней двойки) в таком его представлении. У 810 их 5.
Теперь пример попроще.
Переведём число 63 в 5-ричную систему счисления. Ближайшая к 63 степень числа 5 — это 25 (квадрат 5). Куб (125) будет уже много. То есть 63 лежит между квадратом 5 и кубом. Тогда подберем коэффициент для 5 2 . Это 2.
Получаем 6310 = 50 + 13 = 50 + 10 + 3 = 2 * 5 2 + 2 * 5 + 3 = 2235 .
Ну и, наконец, совсем лёгкие переводы между 8- и 16-ричными системами. Так как их основанием является степень двойки, то перевод делается автоматически, просто заменой цифр на их двоичное представление. Для 8-ричной системы каждая цифра заменяется тремя двоичными разрядами, а для 16-ричной четырьмя. При этом все ведущие нули обязательны, кроме самого старшего разряда.
Переведем в двоичную систему число 5478.
5478= | 101 | 100 | 111 |
5 | 4 | 7 |
Ещё одно, например 7D6A16.
7D6A16= | (0)111 | 1101 | 0110 | 1010 |
7 | D | 6 | A |
Переведем в 16-ричную систему число 7368. Сначала цифры запишем тройками, а потом поделим их на четверки с конца: 7368 = 111 011 110 = 1 1101 1110 = 1DE16 . Переведем в 8-ричную систему число C2516. Сначала цифры запишем четвёрками, а потом поделим их на тройки с конца: C2516 = 1100 0010 0101 = 110 000 100 101 = 60458 . Теперь рассмотрим перевод обратно в десятичную. Он труда не представляет, главное не ошибиться в расчётах. Раскладываем число на многочлен со степенями основания и коэффициентами при них. Потом всё умножаем и складываем. E6816 = 14 * 16 2 + 6 * 16 + 8 = 3688 . 7328 = 7 * 8 2 + 3*8 + 2 = 474 .
Перевод отрицательных чисел
Здесь нужно учесть, что число будет представлено в дополнительном коде. Для перевода числа в дополнительный код нужно знать конечный размер числа, то есть во что мы хотим его вписать — в байт, в два байта, в четыре. Старший разряд числа означает знак. Если там 0, то число положительное, если 1, то отрицательное. Слева число дополняется знаковым разрядом. Беззнаковые (unsigned) числа мы не рассматриваем, они всегда положительные, а старший разряд в них используется как информационный.
Для перевода отрицательного числа в двоичный дополнительный код нужно перевести положительное число в двоичную систему, потом поменять нули на единицы и единицы на нули. Затем прибавить к результату 1.
Итак, переведем число -79 в двоичную систему. Число займёт у нас один байт.
Переводим 79 в двоичную систему, 79 = 1001111. Дополним слева нулями до размера байта, 8 разрядов, получаем 01001111. Меняем 1 на 0 и 0 на 1. Получаем 10110000. К результату прибавляем 1, получаем ответ 10110001 . Попутно отвечаем на вопрос ЕГЭ «сколько единиц в двоичном представлении числа -79?». Ответ — 4.
Прибавление 1 к инверсии числа позволяет устранить разницу между представлениями +0 = 00000000 и -0 = 11111111. В дополнительном коде они будут записаны одинаково 00000000.
Перевод дробных чисел
Дробные числа переводятся способом, обратным делению целых чисел на основание, который мы рассмотрели в самом начале. То есть при помощи последовательного умножения на новое основание с собиранием целых частей. Полученные при умножении целые части собираются, но не участвуют в следующих операциях. Умножаются только дробные. Если исходное число больше 1, то целая и дробная части переводятся отдельно, потом склеиваются.
Переведем число 0,6752 в двоичную систему.
0 | ,6752 |
*2 | |
1 | ,3504 |
*2 | |
0 | ,7008 |
*2 | |
1 | ,4016 |
*2 | |
0 | ,8032 |
*2 | |
1 | ,6064 |
*2 | |
1 | ,2128 |
Процесс можно продолжать долго, пока не получим все нули в дробной части или будет достигнута требуемая точность. Остановимся пока на 6-м знаке.
Получается 0,6752 = 0,101011 .
Если число было 5,6752, то в двоичном виде оно будет 101,101011 .
- Авторские методические материалы
- Задачи по математике
- Задачи по физике
- Биология
- Подготовка к ЕГЭ
- Задачи по химии
- Астрономия
- Статьи об образовании
- История науки
2. Перевод дробных чисел из десятичной системы счисления в любую другую систему счисления
1. Целую часть числа переводим по алгоритму перевода целых чисел из десятичной системы счисления в любую другую систему счисления.
Делим число на основание системы счисления, в которую необходимо перевести, при этом записывая в обратном порядке остатки, из которых складывается искомое число.
2. Дробную часть числа умножаем последовательно на основание системы счисления, в которую необходимо перевести. Умножаем до тех пор, пока не получим единицу в целой части или пока не получим нужное число разрядов по условию задания. Из целых частей получившихся произведений записываем в прямом порядке искомое число.
1. перевести число \(58,14\) из десятичной системы счисления в двоичную систему счисления.
Следуя алгоритму, переводим сначала целую часть десятичного числа \(58\) в двоичную систему счисления. Делим его последовательно на основание искомой системы счисления — \(2\). Получаем число \(111010\). Следующим шагом переводим дробную часть \(0,14\) от десятичного числа, отбросив целую часть. Умножаем последовательно число на основание искомой системы счисления — \(2\). Умножаем до тех пор, пока не получим единицу в целой части. Записываем выделенные на схеме числа в прямом порядке и получаем в итоге двоичное число \(111010,001\).
2. перевести число \(58,14\) из десятичной системы счисления в шестнадцатеричную систему счисления.
Следуя алгоритму, переводим сначала целую часть десятичного числа \(58\) в шестнадцатеричную систему счисления. Делим его последовательно на основание искомой системы счисления — \(16\). Получаем число 3 A . Следующим шагом переводим дробную часть \(0,14\) от десятичного числа, отбросив целую часть. Умножаем последовательно дробную часть на основание искомой системы счисления — \(16\). Умножаем до тех пор, пока не получим ноль в целой части. Записываем выделенные на схеме числа в прямом порядке и получаем в итоге шестнадцатеричное число \(3A,23D7\).