Четное четырехзначное натуральное число сумма цифр которого равна их произведению
Перейти к содержимому

Четное четырехзначное натуральное число сумма цифр которого равна их произведению

ОГЭ, Математика.
Геометрия: Задача №0435B1

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.

Решение задачи:

По условию задачи ВМ — медиана треугольника АВС, следовательно, по свойству медианы, площади треугольников АВМ и ВСМ равны, и равны половине площади треугольника АВС.
S ABM =S BCM =(S ABC )/2.
В свою очередь, AK является медианой для треугольника АВМ, следовательно, по тому же свойству медианы
S ABК =S AKM =(S ABM )/2=(S ABC )/4.
Проведем отрезок СК. СК является медианой для треугольника СМВ, следовательно,
S CMK =S CKB =(S CMB )/2=(S ABC )/4.
Проведем отрезок МЕ, параллельно АР. МЕ является средней линией для треугольника АРС, следовательно (по теореме о средней линии) СЕ=ЕР. А для треугольника МВЕ КР является средней линией, следовательно ВР=ЕР(=СЕ). Т.е. сторона ВС делится на три равные части точками Р и Е.
Проведем высоту h, как показано на рисунке. h является общей высотой для треугольников СКВ и СКР. Выше мы определили, что S CKB =(S ABC )/4. Площадь этого же треугольника =(1/2)*h*BC. S CKP =(1/2)*h*РС=(1/2)*h*(2/3)*ВС=(2/3)*(1/2)*h*BC=(2/3)S CKB =(2/12)S ABC =(1/6)S ABC .
S KPCM =S CMK +S CKP =(S ABC )/4+(1/6)S ABC =(5/12)S ABC .
S ABC /S KPCM =12/5.
Ответ: S ABC /S KPCM =12/5=2,4.

Присоединяйтесь к нам.

Вы можете поблагодарить автора, написать свои претензии или предложения на странице ‘Про нас’

Другие задачи из этого раздела

Задача №0D0F14

Точка О – центр окружности, ACB=25° (см. рисунок). Найдите величину угла AOB (в градусах).

Задача №3A84F2

В окружности с центром в точке О проведены диаметры AD и BC, угол OAB равен 25°. Найдите величину угла OCD.

Задача №31F3D9

В трапеции ABCD AB=CD, AC=AD и ∠ABC=95°. Найдите угол CAD. Ответ дайте в градусах.

Задача №B706F4

Радиус вписанной в квадрат окружности равен 2√ 2 . Найдите радиус окружности, описанной около этого квадрата.

Задача №EB170F

В треугольнике ABC угол C равен 90°, M — середина стороны AB, AB=20, BC=10. Найдите CM.

Комментарии:

(2015-05-26 03:55:13) Сергей: Это задание С6, то есть 26. Было в ГИА по ма­те­ма­ти­ке 28.05.2013. (2015-05-24 17:25:48) Администратор: Валерия, к сожалению, у меня нет такой информации. (2015-05-24 13:29:05) Валерия: Это задание из части С?) Просто по сложности не похоже на часть B, вот интересно это задание C4 или C6?( то есть в геометрии из части С первое задание или последнее), там вроде 24 или 26 задание, так наверное правильнее сказать (2015-05-24 11:49:55) Администратор: Валерия, а что такое c4 и c6? (2015-05-24 11:31:16) Валерия: Это c4 или c6?

Найти задачу

Хочу получать новые решения

Решение №2932 Найдите чётное трёхзначное натуральное число, сумма цифр которого на 1 меньше их произведения.

Найдите чётное трёхзначное натуральное число, сумма цифр которого на 1 меньше их произведения. В ответе укажите какое-нибудь одно такое число.

Источник: Основная волна ЕГЭб 2022

Решение:

Сумма цифр на 1 меньше их произведения (сумма < произведения), значит в произведение не должно быть равно 0 (т.к. оно больше суммы), тогда и в числе не должно быть цифры 0.
Число чётное, значит оканчивается на 2, 4, 6 или 8.
Подходят числа из цифр 1, 2, 4, например:

124
Сумма: 1 + 2 + 4 = 7
Произведение: 1·2·4 = 8

8 – 7 = 1

Ответ: 124.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 1

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com ��

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

ОГЭ, Математика.
Геометрия: Задача №FD6BF0

Лестницу длиной 2,5 м прислонили к дереву. На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на 0,7 м?

Решение задачи:

Лестница, дерево и земля представляют из себя прямоугольный треугольник. Высоту, на которой находится конец лестницы обозначим как X. Тогда по теореме Пифагора мы можем записать 2,5 2 =0,7 2 +X 2 . Отсюда, X 2 =6,25-0,49, X 2 =5,76, X=2,4.
Ответ: высота равна 2,4 метра.

Присоединяйтесь к нам.

Вы можете поблагодарить автора, написать свои претензии или предложения на странице ‘Про нас’

Другие задачи из этого раздела

Задача №0054C7

В треугольнике ABC угол C равен 90°, AC=12 , tgA=2&#8730 10 /3. Найдите AB.

Задача №22AB8C

Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 8, тангенс угла BAC равен 4/3. Найдите радиус вписанной окружности треугольника ABC.

Задача №F13885

В параллелограмме ABCD точка K — середина стороны CD. Известно, что KA=KB. Докажите, что данный параллелограмм — прямоугольник.

Задача №D5F808

Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите AC, если диаметр окружности равен 8,4, а AB=4.

Задача №84B6C0

В треугольнике АВС углы А и С равны 30° и 50° соответственно. Найдите угол между высотой ВН и биссектрисой BD.

Карточки для подготовки к ЕГЭ на базовом уровне. Задание №19.»Числа и их свойства»

Нажмите, чтобы узнать подробности

Карточки предназначены для контроля знаний при подготовке к ЕГЭ на базовом уровне. 10 вариантов в каждом из которых 10 простейших текстовых здач по теме «Числа и их свойства». Для быстрой проверки имеются ответы. Карточки составлены на основе материалов образовательного портала для подготови к экзамнам «РЕШУ ЕГЭ».

Просмотр содержимого документа
«Карточки для подготовки к ЕГЭ на базовом уровне. Задание №19.»Числа и их свойства»»

Вариант 1 19. Числа и их свойства (Цифровая запись числа)

1. Приведите при­мер трёхзначного на­ту­раль­но­го числа, ко­то­рое при де­ле­нии на 3, на 5 и на 7 даёт в остат­ке 2 и в за­пи­си ко­то­ро­го есть толь­ко две раз­лич­ные цифры. В от­ве­те ука­жи­те ровно одно такое число.

2. Найдите трёхзначное на­ту­раль­ное число, боль­шее 500, ко­то­рое при де­ле­нии на 8 и на 5 даёт рав­ные не­ну­ле­вые остат­ки и сред­няя цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским край­них цифр. В от­ве­те ука­жи­те какое-нибудь одно такое число.

3. Найдите трёхзначное натуральное число, которое при делении и на 4, и на 5, и на 6 даёт в остатке 2 и цифры в записи которого чётные. В ответе укажите какое-нибудь одно такое число.

4. Приведите при­мер трёхзначного на­ту­раль­но­го числа, крат­но­го 4, сумма цифр ко­то­ро­го равна их произведению. В от­ве­те ука­жи­те ровно одно такое число.

5. Найдите пя­ти­знач­ное число, крат­ное 15, про­из­ве­де­ние цифр ко­то­ро­го равно 60. В от­ве­те ука­жи­те какое-нибудь одно такое число. Укажите наи­мень­шее такое число.

6. Найдите четырёхзначное на­ту­раль­ное число, крат­ное 19, сумма цифр ко­то­ро­го на 1 боль­ше их произведения.

7. Найдите пя­ти­знач­ное число, крат­ное 15, со­сед­ние цифры ко­то­ро­го от­ли­ча­ют­ся на 3. В от­ве­те ука­жи­те какое-нибудь одно такое число.

8. Приведите при­мер четырёхзначного числа, крат­но­го 12, про­из­ве­де­ние цифр ко­то­ро­го боль­ше 25, но мень­ше 30. В от­ве­те ука­жи­те ровно одно такое число.

9. Найдите пятизначное число, кратное 22, любые две соседние цифры которого отличаются на 2. В ответе укажите какое-нибудь одно такое число.

10. Вычеркните в числе 85417627 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 18. В от­ве­те ука­жи­те ровно одно по­лу­чив­ше­е­ся число.

Вариант 2 19. Числа и их свойства (Цифровая запись числа)

1. Найдите трёхзначное натуральное число, большее 500, которое при делении и на 6, и на 5 даёт равные ненулевые остатки и средняя цифра в записи которого является средним арифметическим крайних цифр. В ответе укажите какое-нибудь одно такое число.

2. Найдите че­ты­рех­знач­ное число, крат­ное 66, все цифры ко­то­ро­го раз­лич­ны и четны. В от­ве­те ука­жи­те какое-нибудь такое число.

3. Найдите трёхзначное число, сумма цифр ко­то­ро­го равна 25, если известно, что его квад­рат де­лит­ся на 16.

4. Найдите трех­знач­ное на­ту­раль­ное число, боль­шее 500, ко­то­рое при де­ле­нии на 4, на 5 и на 6 дает в остат­ке 2, и в за­пи­си ко­то­ро­го есть толь­ко две раз­лич­ные цифры. В от­ве­те ука­жи­те какое-нибудь одно такое число.

5. Найдите трёхзначное число A, об­ла­да­ю­щее всеми сле­ду­ю­щи­ми свойствами:

· сумма цифр числа A де­лит­ся на 5;

· сумма цифр числа (A + 4) де­лит­ся на 5;

· число A боль­ше 350 и мень­ше 400.

В от­ве­те ука­жи­те какое-нибудь одно такое число.

6. Найдите трёхзначное на­ту­раль­ное число, ко­то­рое при де­ле­нии на 4 и 15 даёт рав­ные не­ну­ле­вые остат­ки и сред­няя цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским край­них цифр. В от­ве­те ука­жи­те какое-нибудь одно такое число.

7. Приведите при­мер трёхзначного на­ту­раль­но­го числа боль­ше­го 500, ко­то­рое при де­ле­нии на 6 и на 5 даёт рав­ные не­ну­ле­вые остат­ки и сред­няя цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским край­них цифр. В от­ве­те ука­жи­те ровно одно такое число.

8. Приведите при­мер трёхзначного числа, сумма цифр ко­то­ро­го равна 20, а сумма квад­ра­тов цифр де­лит­ся на 3, но не де­лит­ся на 9.

9. Приведите при­мер трёхзначного на­ту­раль­но­го числа, ко­то­рое при де­ле­нии на 4 и на 15 даёт рав­ные не­ну­ле­вые остат­ки и пер­вая спра­ва цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским двух дру­гих цифр. В от­ве­те ука­жи­те ровно одно такое число.

10. Приведите при­мер четырёхзначного числа, крат­но­го 12, про­из­ве­де­ние цифр ко­то­ро­го боль­ше 40, но мень­ше 45. В от­ве­те ука­жи­те ровно одно такое число.

Вариант 3 19. Числа и их свойства (Цифровая запись числа)

1. Приведите при­мер трёхзначного на­ту­раль­но­го числа боль­ше­го 500, ко­то­рое при де­ле­нии на 6 и на 5 даёт рав­ные не­ну­ле­вые остат­ки и сред­няя цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским край­них цифр. В от­ве­те ука­жи­те ровно одно такое число.

2. Сумма цифр трёхзначного на­ту­раль­но­го числа А де­лит­ся на 12. Сумма цифр числа (А + 6) также де­лит­ся на 12. Най­ди­те наи­мень­шее воз­мож­ное число А.

3. Приведите при­мер трёхзначного на­ту­раль­но­го числа, ко­то­рое при де­ле­нии на 4 и на 15 даёт рав­ные не­ну­ле­вые остат­ки и сред­няя цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским край­них цифр. В от­ве­те ука­жи­те ровно одно такое число.

4. Найдите наи­мень­шее трёхзначное число, ко­то­рое при де­ле­нии на 2 даёт оста­ток 1, при де­ле­нии на 3 даёт оста­ток 2, при де­ле­нии на 5 даёт оста­ток 3 и ко­то­рое за­пи­са­но тремя раз­лич­ны­ми нечётными цифрами.

5. Вычеркните в числе 23462141 три цифры так, чтобы получившееся число делилось на 12. В ответе укажите какое-нибудь одно такое число.

6. Цифры четырёхзначного числа, кратного 5, записали в обратном порядке и получили второе четырёхзначное число. Затем из первого числа вычли второе и получили 2457. Приведите пример такого числа.

7. Найдите четырёхзначное число, крат­ное 75, все цифры ко­то­ро­го раз­лич­ны и нечётны. В от­ве­те ука­жи­те какое-нибудь одно такое число.

8. Приведите при­мер трёхзначного числа, сумма цифр ко­то­ро­го равна 20, а сумма квад­ра­тов цифр де­лит­ся на 3, но не де­лит­ся на 9.

9. Найдите пятизначное число, кратное 22, любые две соседние цифры которого отличаются на 2. В ответе укажите какое-нибудь одно такое число.

10. Приведите при­мер ше­сти­знач­но­го на­ту­раль­но­го числа, ко­то­рое за­пи­сы­ва­ет­ся толь­ко циф­ра­ми 1 и 2 и де­лит­ся на 24. В от­ве­те ука­жи­те ровно одно такое число.

Вариант 4 19. Числа и их свойства (Цифровая запись числа)

1. Вычеркните в числе 23462141 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 12. В от­ве­те ука­жи­те какое-нибудь одно такое число.

2. Найдите четырёхзначное число, крат­ное 22, про­из­ве­де­ние цифр ко­то­ро­го равно 24. В от­ве­те ука­жи­те какое-нибудь одно такое число.

3. Вычеркните в числе 53164018 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 15. В от­ве­те ука­жи­те ровно одно по­лу­чив­ше­е­ся число.

4. Найти че­ты­рех­знач­ное число, крат­ное 44, любые две со­сед­ние цифры ко­то­ро­го от­ли­ча­ют­ся на 1. В от­ве­те ука­жи­те любое такое число.

5.Трёхзначное число при де­ле­нии на 10 даёт в остат­ке 3. Если по­след­нюю цифру числа пе­ре­не­сти в на­ча­ло его записи, то по­лу­чен­ное число будет на 72 боль­ше первоначального. Най­ди­те ис­ход­ное число.

6. Найдите четырёхзначное на­ту­раль­ное число, мень­шее 1360, ко­то­рое де­лит­ся на каж­дую свою цифру и все цифры ко­то­ро­го раз­лич­ны и не равны нулю. В от­ве­те ука­жи­те какое-нибудь одно такое число.

7. Сумма цифр трёхзначного числа A де­лит­ся на 13. Сумма цифр числа A+5 также де­лит­ся на 13. Най­ди­те такое число A.

8. Вычеркните в числе 74513527 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 15. В от­ве­те ука­жи­те ровно одно по­лу­чив­ше­е­ся число.

9. Найдите пятизначное число, кратное 22, любые две соседние цифры которого отличаются на 2. В ответе укажите какое-нибудь одно такое число.

10. Найдите пятизначное натуральное число, кратное 5, сумма цифр которого равна их произведению. В ответе укажите какое-нибудь одно такое число.

Вариант 5 19. Числа и их свойства (Цифровая запись числа)

1. Найдите четырёхзначное число, крат­ное 22, про­из­ве­де­ние цифр ко­то­ро­го равно 24. В от­ве­те ука­жи­те какое-нибудь одно такое число.

2. Сумма цифр трёхзначного числа A де­лит­ся на 13. Сумма цифр числа A+5 также де­лит­ся на 13. Най­ди­те такое число A.

3. Найдите ше­сти­знач­ное на­ту­раль­ное число, ко­то­рое за­пи­сы­ва­ет­ся толь­ко циф­ра­ми 1 и 0 и де­лит­ся на 24.

4. Найдите трёхзначное натуральное число, большее 500, которое при делении на 8 и на 5 даёт равные ненулевые остатки и средняя цифра которого является средним арифметическим крайних цифр. В ответе укажите какое-нибудь одно такое число.

5. Вычеркните в числе 35242345 три цифры так, чтобы получившееся число делилось на 12. В ответе укажите какое-нибудь одно получившееся число.

6. Найдите трёхзначное натуральное число, большее 600, которое при делении и на 3, и на 4, и на 5 даёт в остатке 1 и цифры в записи которого расположены в порядке убывания слева направо. В ответе укажите какое-нибудь одно такое число.

7. Найдите четырёхзначное на­ту­раль­ное число, крат­ное 19, сумма цифр ко­то­ро­го на 1 боль­ше их произведения.

8. Найдите трёхзначное число, кратное 11, все цифры которого различны, а сумма квадратов цифр делится на 4, но не делится на 16. В ответе укажите какое-нибудь одно такое число.

9. Приведите при­мер трёхзначного на­ту­раль­но­го числа, ко­то­рое при де­ле­нии на 4 и на 15 даёт рав­ные не­ну­ле­вые остат­ки и пер­вая спра­ва цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским двух дру­гих цифр. В от­ве­те ука­жи­те ровно одно такое число.

10. Найдите чётное трёхзначное натуральное число, сумма цифр которого на 1 меньше их произведения. В ответе укажите какое-нибудь одно такое число.

Вариант 6 19. Числа и их свойства (Цифровая запись числа)

1. Приведите при­мер четырёхзначного числа, крат­но­го 12, про­из­ве­де­ние цифр ко­то­ро­го боль­ше 25, но мень­ше 30. В от­ве­те ука­жи­те ровно одно такое число.

2. Найдите ше­сти­знач­ное на­ту­раль­ное число, ко­то­рое за­пи­сы­ва­ет­ся толь­ко циф­ра­ми 1 и 5 и де­лит­ся на 45. В от­ве­те ука­жи­те наибольшее такое число.

3. Приведите при­мер четырёхзначного на­ту­раль­но­го числа, крат­но­го 4, сумма цифр ко­то­ро­го равна их произведению. В от­ве­те ука­жи­те ровно одно такое число.

4. Вычеркните в числе 75157613 три цифры так, чтобы получившееся число делилось на 12. В ответе укажите какое-нибудь одно получившееся число.

5. Вычеркните в числе 85417627 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 18. В от­ве­те ука­жи­те ровно одно по­лу­чив­ше­е­ся число.

6. Сумма цифр трёхзначного числа A де­лит­ся на 13. Сумма цифр числа A+5 также де­лит­ся на 13. Най­ди­те такое число A.

7. Найдите наи­мень­шее пя­ти­знач­ное число, крат­ное 55, про­из­ве­де­ние цифр ко­то­ро­го боль­ше 50, но мень­ше 75.

8. Найдите наи­мень­шее трёхзначное число, ко­то­рое при де­ле­нии на 2 даёт оста­ток 1, при де­ле­нии на 3 даёт оста­ток 2, при де­ле­нии на 5 даёт оста­ток 3 и ко­то­рое за­пи­са­но тремя раз­лич­ны­ми нечётными цифрами.

9. Найдите на­ту­раль­ное число, боль­шее 1340, но мень­шее 1640, ко­то­рое де­лит­ся на каж­дую свою цифру и все цифры ко­то­ро­го раз­лич­ны и не равны нулю. В от­ве­те ука­жи­те какое-нибудь одно такое число.

10. Приведите при­мер трёхзначного на­ту­раль­но­го числа, крат­но­го 4, сумма цифр ко­то­ро­го равна их произведению. В от­ве­те ука­жи­те ровно одно такое число.

Вариант 7 19. Числа и их свойства (Цифровая запись числа)

1. Найдите четырёхзначное число, большее 2000, но меньшее 4000, которое делится на 18 и каждая следующая цифра которого больше предыдущей. В ответе укажите какое-нибудь одно такое число.

2. Вычеркните в числе 75157613 три цифры так, чтобы получившееся число делилось на 12. В ответе укажите какое-нибудь одно получившееся число.

3. Приведите при­мер ше­сти­знач­но­го на­ту­раль­но­го числа, ко­то­рое за­пи­сы­ва­ет­ся толь­ко циф­ра­ми 1 и 2 и де­лит­ся на 24. В от­ве­те ука­жи­те ровно одно такое число.

4. Найдите трёхзначное натуральное число, большее 500, которое при делении и на 6, и на 5 даёт равные ненулевые остатки и средняя цифра в записи которого является средним арифметическим крайних цифр. В ответе укажите какое-нибудь одно такое число.

5. Приведите при­мер четырёхзначного числа, крат­но­го 12, про­из­ве­де­ние цифр ко­то­ро­го равно 10. В от­ве­те ука­жи­те ровно одно такое число.

6. Найдите наи­мень­шее пя­ти­знач­ное число, крат­ное 55, про­из­ве­де­ние цифр ко­то­ро­го боль­ше 50, но мень­ше 75.

7. Найдите четырёхзначное число, большее 6500, но меньшее 7500, которое делится на 15 и каждая следующая цифра которого меньше предыдущей. В ответе укажите какое-нибудь одно такое число.

8. Трёхзначное число при де­ле­нии на 10 даёт в остат­ке 3. Если по­след­нюю цифру числа пе­ре­не­сти в на­ча­ло его записи, то по­лу­чен­ное число будет на 72 боль­ше первоначального. Най­ди­те ис­ход­ное число.

9.Найдите трёхзначное число, кратное 70, все цифры которого различны, а сумма квадратов цифр делится на 2, но не делится на 4. В ответе укажите какое-нибудь одно такое число.

10. Приведите при­мер трёхзначного на­ту­раль­но­го числа, боль­ше­го 500, ко­то­рое при де­ле­нии на 8 и на 5 даёт рав­ные не­ну­ле­вые остат­ки и пер­вая слева цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским двух дру­гих цифр. В от­ве­те ука­жи­те ровно одно такое число.

Вариант 8 19. Числа и их свойства (Цифровая запись числа)

1. Найдите трёхзначное на­ту­раль­ное число, боль­шее 400, ко­то­рое при де­ле­нии на 6 и на 5 даёт рав­ные не­ну­ле­вые остат­ки и пер­вая слева цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским двух дру­гих цифр. В от­ве­те ука­жи­те какое-нибудь одно такое число.

2. Найдите трёхзначное натуральное число, большее 500, которое при делении на 8 и на 5 даёт равные ненулевые остатки и средняя цифра которого является средним арифметическим крайних цифр. В ответе укажите какое-нибудь одно такое число.

3. Цифры четырёхзначного числа, крат­но­го 5, за­пи­са­ли в об­рат­ном по­ряд­ке и по­лу­чи­ли вто­рое четырёхзначное число. Затем из пер­во­го числа вычли вто­рое и по­лу­чи­ли 4536. При­ве­ди­те ровно один при­мер та­ко­го числа.

4. Цифры четырёхзначного числа, крат­но­го 5, за­пи­са­ли в об­рат­ном по­ряд­ке и по­лу­чи­ли вто­рое четырёхзначное число. Затем из пер­во­го числа вычли вто­рое и по­лу­чи­ли 2457. При­ве­ди­те при­мер та­ко­го числа.

5. Найдите трёхзначное натуральное число, которое при делении и на 3, и на 5, и на 7 даёт в остатке 2 и в записи которого есть только две различные цифры. В ответе укажите какое-нибудь одно такое число.

6. Сумма цифр трёхзначного числа A де­лит­ся на 13. Сумма цифр числа A+5 также де­лит­ся на 13. Най­ди­те такое число A.

7. Вычеркните в числе 74513527 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 15. В от­ве­те ука­жи­те ровно одно по­лу­чив­ше­е­ся число.

8. Найдите четырёхзначное число, большее 1500, но меньшее 2000, которое делится на 24 и сумма цифр которого равна 24. В ответе укажите какое-нибудь одно такое число.

9. Вычеркните в числе 65031029 три цифры так, чтобы получившееся число делилось на 15. В ответе укажите какое-нибудь одно получившееся число.

10. Найдите трёхзначное число A, об­ла­да­ю­щее всеми сле­ду­ю­щи­ми свойствами:

· сумма цифр числа A де­лит­ся на 8;

· сумма цифр числа A + 1 де­лит­ся на 8;

· в числе A сумма край­них цифр крат­на сред­ней цифре.

В от­ве­те ука­жи­те какое-нибудь одно такое число.

Вариант 9 19. Числа и их свойства (Цифровая запись числа)

1. Приведите при­мер четырёхзначного числа, крат­но­го 15, про­из­ве­де­ние цифр ко­то­ро­го боль­ше 35, но мень­ше 45. В от­ве­те ука­жи­те ровно одно такое число.

2. Найдите четырёхзначное на­ту­раль­ное число, мень­шее 1360, ко­то­рое де­лит­ся на каж­дую свою цифру и все цифры ко­то­ро­го раз­лич­ны и не равны нулю. В от­ве­те ука­жи­те какое-нибудь одно такое число.

3. Вычеркните в числе 53164018 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 15. В от­ве­те ука­жи­те ровно одно по­лу­чив­ше­е­ся число.

4. Приведите при­мер трёхзначного на­ту­раль­но­го числа, ко­то­рое при де­ле­нии на 4 и на 15 даёт рав­ные не­ну­ле­вые остат­ки и сред­няя цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским край­них цифр. В от­ве­те ука­жи­те ровно одно такое число.

5. Найдите трёхзначное число, сумма цифр ко­то­ро­го равна 25, если известно, что его квад­рат де­лит­ся на 16.

6. Найдите трёхзначное натуральное число, большее 500, которое при делении и на 3, и на 4, и на 5 даёт в остатке 2 и в записи которого использованы только две различные цифры. В ответе укажите какое-нибудь одно такое число.

7. Приведите при­мер ше­сти­знач­но­го на­ту­раль­но­го числа, ко­то­рое за­пи­сы­ва­ет­ся толь­ко циф­ра­ми 1 и 2 и де­лит­ся на 24. В от­ве­те ука­жи­те ровно одно такое число.

8. Найдите четырёхзначное число, большее 3000, но меньшее 3500, которое делится на 12 и каждая следующая цифра которого больше предыдущей. В ответе укажите какое-нибудь одно такое число.

9. Трёхзначное число при де­ле­нии на 10 даёт в остат­ке 3. Если по­след­нюю цифру числа пе­ре­не­сти в на­ча­ло его записи, то по­лу­чен­ное число будет на 72 боль­ше первоначального. Най­ди­те ис­ход­ное число.

10. Найдите четырёхзначное число, крат­ное 88, все цифры ко­то­ро­го раз­лич­ны и чётны. В от­ве­те ука­жи­те какое-нибудь одно такое число.

Вариант 10 19. Числа и их свойства (Цифровая запись числа)

1. Вычеркните в числе 141565041 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 30. В от­ве­те ука­жи­те ровно одно по­лу­чив­ше­е­ся число.

2. Приведите при­мер четырёхзначного числа, крат­но­го 12, про­из­ве­де­ние цифр ко­то­ро­го боль­ше 25, но мень­ше 30. В от­ве­те ука­жи­те ровно одно такое число.

3. Найдите четырёхзначное число, крат­ное 22, про­из­ве­де­ние цифр ко­то­ро­го равно 60. В от­ве­те ука­жи­те какое-нибудь одно такое число.

4. Найдите четырёхзначное на­ту­раль­ное число, мень­шее 1360, ко­то­рое де­лит­ся на каж­дую свою цифру и все цифры ко­то­ро­го раз­лич­ны и не равны нулю. В от­ве­те ука­жи­те какое-нибудь одно такое число.

5. Приведите при­мер трёхзначного на­ту­раль­но­го числа, ко­то­рое при де­ле­нии на 3, на 5 и на 7 даёт в остат­ке 2 и в за­пи­си ко­то­ро­го есть толь­ко две раз­лич­ные цифры. В от­ве­те ука­жи­те ровно одно такое число.

6. Приведите при­мер четырёхзначного числа, крат­но­го 12, про­из­ве­де­ние цифр ко­то­ро­го равно 10. В от­ве­те ука­жи­те ровно одно такое число.

7. Найдите пятизначное число, кратное 12, любые две соседние цифры которого отличаются на 2. В ответе укажите какое-нибудь одно такое число.

8. Найдите четырёхзначное число, крат­ное 88, все цифры ко­то­ро­го раз­лич­ны и чётны. В от­ве­те ука­жи­те какое-нибудь одно такое число.

9. Найдите трех­знач­ное на­ту­раль­ное число, боль­шее 500, ко­то­рое при де­ле­нии на 4, на 5 и на 6 дает в остат­ке 2, и в за­пи­си ко­то­ро­го есть толь­ко две раз­лич­ные цифры. В от­ве­те ука­жи­те какое-нибудь одно такое число.

10. Вычеркните в числе 53164018 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 15. В от­ве­те ука­жи­те ровно одно по­лу­чив­ше­е­ся число.

19. Числа и их свойства (Цифровая запись числа)

  1. 212|422|737
  2. 642|963
  3. 242|422|482|602|662|842
  4. 132|312
  5. 11265
  6. 3211
  7. 63030|69630|63630
  8. 1272|2172|2712|7212
  9. 46464|46420|42020
  10. 84762|85176|54162

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *