ОГЭ, Математика.
Геометрия: Задача №0435B1
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.
Решение задачи:
По условию задачи ВМ — медиана треугольника АВС, следовательно, по свойству медианы, площади треугольников АВМ и ВСМ равны, и равны половине площади треугольника АВС.
S ABM =S BCM =(S ABC )/2.
В свою очередь, AK является медианой для треугольника АВМ, следовательно, по тому же свойству медианы
S ABК =S AKM =(S ABM )/2=(S ABC )/4.
Проведем отрезок СК. СК является медианой для треугольника СМВ, следовательно,
S CMK =S CKB =(S CMB )/2=(S ABC )/4.
Проведем отрезок МЕ, параллельно АР. МЕ является средней линией для треугольника АРС, следовательно (по теореме о средней линии) СЕ=ЕР. А для треугольника МВЕ КР является средней линией, следовательно ВР=ЕР(=СЕ). Т.е. сторона ВС делится на три равные части точками Р и Е.
Проведем высоту h, как показано на рисунке. h является общей высотой для треугольников СКВ и СКР. Выше мы определили, что S CKB =(S ABC )/4. Площадь этого же треугольника =(1/2)*h*BC. S CKP =(1/2)*h*РС=(1/2)*h*(2/3)*ВС=(2/3)*(1/2)*h*BC=(2/3)S CKB =(2/12)S ABC =(1/6)S ABC .
S KPCM =S CMK +S CKP =(S ABC )/4+(1/6)S ABC =(5/12)S ABC .
S ABC /S KPCM =12/5.
Ответ: S ABC /S KPCM =12/5=2,4.
Присоединяйтесь к нам.
Вы можете поблагодарить автора, написать свои претензии или предложения на странице ‘Про нас’
Другие задачи из этого раздела
Задача №0D0F14
Точка О – центр окружности, ACB=25° (см. рисунок). Найдите величину угла AOB (в градусах).
Задача №3A84F2
В окружности с центром в точке О проведены диаметры AD и BC, угол OAB равен 25°. Найдите величину угла OCD.
Задача №31F3D9
В трапеции ABCD AB=CD, AC=AD и ∠ABC=95°. Найдите угол CAD. Ответ дайте в градусах.
Задача №B706F4
Радиус вписанной в квадрат окружности равен 2√ 2 . Найдите радиус окружности, описанной около этого квадрата.
Задача №EB170F
В треугольнике ABC угол C равен 90°, M — середина стороны AB, AB=20, BC=10. Найдите CM.
Комментарии:
(2015-05-26 03:55:13) Сергей: Это задание С6, то есть 26. Было в ГИА по математике 28.05.2013. (2015-05-24 17:25:48) Администратор: Валерия, к сожалению, у меня нет такой информации. (2015-05-24 13:29:05) Валерия: Это задание из части С?) Просто по сложности не похоже на часть B, вот интересно это задание C4 или C6?( то есть в геометрии из части С первое задание или последнее), там вроде 24 или 26 задание, так наверное правильнее сказать (2015-05-24 11:49:55) Администратор: Валерия, а что такое c4 и c6? (2015-05-24 11:31:16) Валерия: Это c4 или c6?
Найти задачу
Хочу получать новые решения
Решение №2932 Найдите чётное трёхзначное натуральное число, сумма цифр которого на 1 меньше их произведения.
Найдите чётное трёхзначное натуральное число, сумма цифр которого на 1 меньше их произведения. В ответе укажите какое-нибудь одно такое число.
Источник: Основная волна ЕГЭб 2022
Решение:
Сумма цифр на 1 меньше их произведения (сумма < произведения), значит в произведение не должно быть равно 0 (т.к. оно больше суммы), тогда и в числе не должно быть цифры 0.
Число чётное, значит оканчивается на 2, 4, 6 или 8.
Подходят числа из цифр 1, 2, 4, например:
124
Сумма: 1 + 2 + 4 = 7
Произведение: 1·2·4 = 8
8 – 7 = 1
Ответ: 124.
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 5 / 5. Количество оценок: 1
Оценок пока нет. Поставь оценку первым.
Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️
Вступай в группу vk.com
Расскажи, что не так? Я исправлю в ближайшее время!
В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.
ОГЭ, Математика.
Геометрия: Задача №FD6BF0
Лестницу длиной 2,5 м прислонили к дереву. На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на 0,7 м?
Решение задачи:
Лестница, дерево и земля представляют из себя прямоугольный треугольник. Высоту, на которой находится конец лестницы обозначим как X. Тогда по теореме Пифагора мы можем записать 2,5 2 =0,7 2 +X 2 . Отсюда, X 2 =6,25-0,49, X 2 =5,76, X=2,4.
Ответ: высота равна 2,4 метра.
Присоединяйтесь к нам.
Вы можете поблагодарить автора, написать свои претензии или предложения на странице ‘Про нас’
Другие задачи из этого раздела
Задача №0054C7
В треугольнике ABC угол C равен 90°, AC=12 , tgA=2√ 10 /3. Найдите AB.
Задача №22AB8C
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 8, тангенс угла BAC равен 4/3. Найдите радиус вписанной окружности треугольника ABC.
Задача №F13885
В параллелограмме ABCD точка K — середина стороны CD. Известно, что KA=KB. Докажите, что данный параллелограмм — прямоугольник.
Задача №D5F808
Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите AC, если диаметр окружности равен 8,4, а AB=4.
Задача №84B6C0
В треугольнике АВС углы А и С равны 30° и 50° соответственно. Найдите угол между высотой ВН и биссектрисой BD.
Карточки для подготовки к ЕГЭ на базовом уровне. Задание №19.»Числа и их свойства»
Карточки предназначены для контроля знаний при подготовке к ЕГЭ на базовом уровне. 10 вариантов в каждом из которых 10 простейших текстовых здач по теме «Числа и их свойства». Для быстрой проверки имеются ответы. Карточки составлены на основе материалов образовательного портала для подготови к экзамнам «РЕШУ ЕГЭ».
Просмотр содержимого документа
«Карточки для подготовки к ЕГЭ на базовом уровне. Задание №19.»Числа и их свойства»»
Вариант 1 19. Числа и их свойства (Цифровая запись числа)
1. Приведите пример трёхзначного натурального числа, которое при делении на 3, на 5 и на 7 даёт в остатке 2 и в записи которого есть только две различные цифры. В ответе укажите ровно одно такое число.
2. Найдите трёхзначное натуральное число, большее 500, которое при делении на 8 и на 5 даёт равные ненулевые остатки и средняя цифра которого является средним арифметическим крайних цифр. В ответе укажите какое-нибудь одно такое число.
3. Найдите трёхзначное натуральное число, которое при делении и на 4, и на 5, и на 6 даёт в остатке 2 и цифры в записи которого чётные. В ответе укажите какое-нибудь одно такое число.
4. Приведите пример трёхзначного натурального числа, кратного 4, сумма цифр которого равна их произведению. В ответе укажите ровно одно такое число.
5. Найдите пятизначное число, кратное 15, произведение цифр которого равно 60. В ответе укажите какое-нибудь одно такое число. Укажите наименьшее такое число.
6. Найдите четырёхзначное натуральное число, кратное 19, сумма цифр которого на 1 больше их произведения.
7. Найдите пятизначное число, кратное 15, соседние цифры которого отличаются на 3. В ответе укажите какое-нибудь одно такое число.
8. Приведите пример четырёхзначного числа, кратного 12, произведение цифр которого больше 25, но меньше 30. В ответе укажите ровно одно такое число.
9. Найдите пятизначное число, кратное 22, любые две соседние цифры которого отличаются на 2. В ответе укажите какое-нибудь одно такое число.
10. Вычеркните в числе 85417627 три цифры так, чтобы получившееся число делилось на 18. В ответе укажите ровно одно получившееся число.
Вариант 2 19. Числа и их свойства (Цифровая запись числа)
1. Найдите трёхзначное натуральное число, большее 500, которое при делении и на 6, и на 5 даёт равные ненулевые остатки и средняя цифра в записи которого является средним арифметическим крайних цифр. В ответе укажите какое-нибудь одно такое число.
2. Найдите четырехзначное число, кратное 66, все цифры которого различны и четны. В ответе укажите какое-нибудь такое число.
3. Найдите трёхзначное число, сумма цифр которого равна 25, если известно, что его квадрат делится на 16.
4. Найдите трехзначное натуральное число, большее 500, которое при делении на 4, на 5 и на 6 дает в остатке 2, и в записи которого есть только две различные цифры. В ответе укажите какое-нибудь одно такое число.
5. Найдите трёхзначное число A, обладающее всеми следующими свойствами:
· сумма цифр числа A делится на 5;
· сумма цифр числа (A + 4) делится на 5;
· число A больше 350 и меньше 400.
В ответе укажите какое-нибудь одно такое число.
6. Найдите трёхзначное натуральное число, которое при делении на 4 и 15 даёт равные ненулевые остатки и средняя цифра которого является средним арифметическим крайних цифр. В ответе укажите какое-нибудь одно такое число.
7. Приведите пример трёхзначного натурального числа большего 500, которое при делении на 6 и на 5 даёт равные ненулевые остатки и средняя цифра которого является средним арифметическим крайних цифр. В ответе укажите ровно одно такое число.
8. Приведите пример трёхзначного числа, сумма цифр которого равна 20, а сумма квадратов цифр делится на 3, но не делится на 9.
9. Приведите пример трёхзначного натурального числа, которое при делении на 4 и на 15 даёт равные ненулевые остатки и первая справа цифра которого является средним арифметическим двух других цифр. В ответе укажите ровно одно такое число.
10. Приведите пример четырёхзначного числа, кратного 12, произведение цифр которого больше 40, но меньше 45. В ответе укажите ровно одно такое число.
Вариант 3 19. Числа и их свойства (Цифровая запись числа)
1. Приведите пример трёхзначного натурального числа большего 500, которое при делении на 6 и на 5 даёт равные ненулевые остатки и средняя цифра которого является средним арифметическим крайних цифр. В ответе укажите ровно одно такое число.
2. Сумма цифр трёхзначного натурального числа А делится на 12. Сумма цифр числа (А + 6) также делится на 12. Найдите наименьшее возможное число А.
3. Приведите пример трёхзначного натурального числа, которое при делении на 4 и на 15 даёт равные ненулевые остатки и средняя цифра которого является средним арифметическим крайних цифр. В ответе укажите ровно одно такое число.
4. Найдите наименьшее трёхзначное число, которое при делении на 2 даёт остаток 1, при делении на 3 даёт остаток 2, при делении на 5 даёт остаток 3 и которое записано тремя различными нечётными цифрами.
5. Вычеркните в числе 23462141 три цифры так, чтобы получившееся число делилось на 12. В ответе укажите какое-нибудь одно такое число.
6. Цифры четырёхзначного числа, кратного 5, записали в обратном порядке и получили второе четырёхзначное число. Затем из первого числа вычли второе и получили 2457. Приведите пример такого числа.
7. Найдите четырёхзначное число, кратное 75, все цифры которого различны и нечётны. В ответе укажите какое-нибудь одно такое число.
8. Приведите пример трёхзначного числа, сумма цифр которого равна 20, а сумма квадратов цифр делится на 3, но не делится на 9.
9. Найдите пятизначное число, кратное 22, любые две соседние цифры которого отличаются на 2. В ответе укажите какое-нибудь одно такое число.
10. Приведите пример шестизначного натурального числа, которое записывается только цифрами 1 и 2 и делится на 24. В ответе укажите ровно одно такое число.
Вариант 4 19. Числа и их свойства (Цифровая запись числа)
1. Вычеркните в числе 23462141 три цифры так, чтобы получившееся число делилось на 12. В ответе укажите какое-нибудь одно такое число.
2. Найдите четырёхзначное число, кратное 22, произведение цифр которого равно 24. В ответе укажите какое-нибудь одно такое число.
3. Вычеркните в числе 53164018 три цифры так, чтобы получившееся число делилось на 15. В ответе укажите ровно одно получившееся число.
4. Найти четырехзначное число, кратное 44, любые две соседние цифры которого отличаются на 1. В ответе укажите любое такое число.
5.Трёхзначное число при делении на 10 даёт в остатке 3. Если последнюю цифру числа перенести в начало его записи, то полученное число будет на 72 больше первоначального. Найдите исходное число.
6. Найдите четырёхзначное натуральное число, меньшее 1360, которое делится на каждую свою цифру и все цифры которого различны и не равны нулю. В ответе укажите какое-нибудь одно такое число.
7. Сумма цифр трёхзначного числа A делится на 13. Сумма цифр числа A+5 также делится на 13. Найдите такое число A.
8. Вычеркните в числе 74513527 три цифры так, чтобы получившееся число делилось на 15. В ответе укажите ровно одно получившееся число.
9. Найдите пятизначное число, кратное 22, любые две соседние цифры которого отличаются на 2. В ответе укажите какое-нибудь одно такое число.
10. Найдите пятизначное натуральное число, кратное 5, сумма цифр которого равна их произведению. В ответе укажите какое-нибудь одно такое число.
Вариант 5 19. Числа и их свойства (Цифровая запись числа)
1. Найдите четырёхзначное число, кратное 22, произведение цифр которого равно 24. В ответе укажите какое-нибудь одно такое число.
2. Сумма цифр трёхзначного числа A делится на 13. Сумма цифр числа A+5 также делится на 13. Найдите такое число A.
3. Найдите шестизначное натуральное число, которое записывается только цифрами 1 и 0 и делится на 24.
4. Найдите трёхзначное натуральное число, большее 500, которое при делении на 8 и на 5 даёт равные ненулевые остатки и средняя цифра которого является средним арифметическим крайних цифр. В ответе укажите какое-нибудь одно такое число.
5. Вычеркните в числе 35242345 три цифры так, чтобы получившееся число делилось на 12. В ответе укажите какое-нибудь одно получившееся число.
6. Найдите трёхзначное натуральное число, большее 600, которое при делении и на 3, и на 4, и на 5 даёт в остатке 1 и цифры в записи которого расположены в порядке убывания слева направо. В ответе укажите какое-нибудь одно такое число.
7. Найдите четырёхзначное натуральное число, кратное 19, сумма цифр которого на 1 больше их произведения.
8. Найдите трёхзначное число, кратное 11, все цифры которого различны, а сумма квадратов цифр делится на 4, но не делится на 16. В ответе укажите какое-нибудь одно такое число.
9. Приведите пример трёхзначного натурального числа, которое при делении на 4 и на 15 даёт равные ненулевые остатки и первая справа цифра которого является средним арифметическим двух других цифр. В ответе укажите ровно одно такое число.
10. Найдите чётное трёхзначное натуральное число, сумма цифр которого на 1 меньше их произведения. В ответе укажите какое-нибудь одно такое число.
Вариант 6 19. Числа и их свойства (Цифровая запись числа)
1. Приведите пример четырёхзначного числа, кратного 12, произведение цифр которого больше 25, но меньше 30. В ответе укажите ровно одно такое число.
2. Найдите шестизначное натуральное число, которое записывается только цифрами 1 и 5 и делится на 45. В ответе укажите наибольшее такое число.
3. Приведите пример четырёхзначного натурального числа, кратного 4, сумма цифр которого равна их произведению. В ответе укажите ровно одно такое число.
4. Вычеркните в числе 75157613 три цифры так, чтобы получившееся число делилось на 12. В ответе укажите какое-нибудь одно получившееся число.
5. Вычеркните в числе 85417627 три цифры так, чтобы получившееся число делилось на 18. В ответе укажите ровно одно получившееся число.
6. Сумма цифр трёхзначного числа A делится на 13. Сумма цифр числа A+5 также делится на 13. Найдите такое число A.
7. Найдите наименьшее пятизначное число, кратное 55, произведение цифр которого больше 50, но меньше 75.
8. Найдите наименьшее трёхзначное число, которое при делении на 2 даёт остаток 1, при делении на 3 даёт остаток 2, при делении на 5 даёт остаток 3 и которое записано тремя различными нечётными цифрами.
9. Найдите натуральное число, большее 1340, но меньшее 1640, которое делится на каждую свою цифру и все цифры которого различны и не равны нулю. В ответе укажите какое-нибудь одно такое число.
10. Приведите пример трёхзначного натурального числа, кратного 4, сумма цифр которого равна их произведению. В ответе укажите ровно одно такое число.
Вариант 7 19. Числа и их свойства (Цифровая запись числа)
1. Найдите четырёхзначное число, большее 2000, но меньшее 4000, которое делится на 18 и каждая следующая цифра которого больше предыдущей. В ответе укажите какое-нибудь одно такое число.
2. Вычеркните в числе 75157613 три цифры так, чтобы получившееся число делилось на 12. В ответе укажите какое-нибудь одно получившееся число.
3. Приведите пример шестизначного натурального числа, которое записывается только цифрами 1 и 2 и делится на 24. В ответе укажите ровно одно такое число.
4. Найдите трёхзначное натуральное число, большее 500, которое при делении и на 6, и на 5 даёт равные ненулевые остатки и средняя цифра в записи которого является средним арифметическим крайних цифр. В ответе укажите какое-нибудь одно такое число.
5. Приведите пример четырёхзначного числа, кратного 12, произведение цифр которого равно 10. В ответе укажите ровно одно такое число.
6. Найдите наименьшее пятизначное число, кратное 55, произведение цифр которого больше 50, но меньше 75.
7. Найдите четырёхзначное число, большее 6500, но меньшее 7500, которое делится на 15 и каждая следующая цифра которого меньше предыдущей. В ответе укажите какое-нибудь одно такое число.
8. Трёхзначное число при делении на 10 даёт в остатке 3. Если последнюю цифру числа перенести в начало его записи, то полученное число будет на 72 больше первоначального. Найдите исходное число.
9.Найдите трёхзначное число, кратное 70, все цифры которого различны, а сумма квадратов цифр делится на 2, но не делится на 4. В ответе укажите какое-нибудь одно такое число.
10. Приведите пример трёхзначного натурального числа, большего 500, которое при делении на 8 и на 5 даёт равные ненулевые остатки и первая слева цифра которого является средним арифметическим двух других цифр. В ответе укажите ровно одно такое число.
Вариант 8 19. Числа и их свойства (Цифровая запись числа)
1. Найдите трёхзначное натуральное число, большее 400, которое при делении на 6 и на 5 даёт равные ненулевые остатки и первая слева цифра которого является средним арифметическим двух других цифр. В ответе укажите какое-нибудь одно такое число.
2. Найдите трёхзначное натуральное число, большее 500, которое при делении на 8 и на 5 даёт равные ненулевые остатки и средняя цифра которого является средним арифметическим крайних цифр. В ответе укажите какое-нибудь одно такое число.
3. Цифры четырёхзначного числа, кратного 5, записали в обратном порядке и получили второе четырёхзначное число. Затем из первого числа вычли второе и получили 4536. Приведите ровно один пример такого числа.
4. Цифры четырёхзначного числа, кратного 5, записали в обратном порядке и получили второе четырёхзначное число. Затем из первого числа вычли второе и получили 2457. Приведите пример такого числа.
5. Найдите трёхзначное натуральное число, которое при делении и на 3, и на 5, и на 7 даёт в остатке 2 и в записи которого есть только две различные цифры. В ответе укажите какое-нибудь одно такое число.
6. Сумма цифр трёхзначного числа A делится на 13. Сумма цифр числа A+5 также делится на 13. Найдите такое число A.
7. Вычеркните в числе 74513527 три цифры так, чтобы получившееся число делилось на 15. В ответе укажите ровно одно получившееся число.
8. Найдите четырёхзначное число, большее 1500, но меньшее 2000, которое делится на 24 и сумма цифр которого равна 24. В ответе укажите какое-нибудь одно такое число.
9. Вычеркните в числе 65031029 три цифры так, чтобы получившееся число делилось на 15. В ответе укажите какое-нибудь одно получившееся число.
10. Найдите трёхзначное число A, обладающее всеми следующими свойствами:
· сумма цифр числа A делится на 8;
· сумма цифр числа A + 1 делится на 8;
· в числе A сумма крайних цифр кратна средней цифре.
В ответе укажите какое-нибудь одно такое число.
Вариант 9 19. Числа и их свойства (Цифровая запись числа)
1. Приведите пример четырёхзначного числа, кратного 15, произведение цифр которого больше 35, но меньше 45. В ответе укажите ровно одно такое число.
2. Найдите четырёхзначное натуральное число, меньшее 1360, которое делится на каждую свою цифру и все цифры которого различны и не равны нулю. В ответе укажите какое-нибудь одно такое число.
3. Вычеркните в числе 53164018 три цифры так, чтобы получившееся число делилось на 15. В ответе укажите ровно одно получившееся число.
4. Приведите пример трёхзначного натурального числа, которое при делении на 4 и на 15 даёт равные ненулевые остатки и средняя цифра которого является средним арифметическим крайних цифр. В ответе укажите ровно одно такое число.
5. Найдите трёхзначное число, сумма цифр которого равна 25, если известно, что его квадрат делится на 16.
6. Найдите трёхзначное натуральное число, большее 500, которое при делении и на 3, и на 4, и на 5 даёт в остатке 2 и в записи которого использованы только две различные цифры. В ответе укажите какое-нибудь одно такое число.
7. Приведите пример шестизначного натурального числа, которое записывается только цифрами 1 и 2 и делится на 24. В ответе укажите ровно одно такое число.
8. Найдите четырёхзначное число, большее 3000, но меньшее 3500, которое делится на 12 и каждая следующая цифра которого больше предыдущей. В ответе укажите какое-нибудь одно такое число.
9. Трёхзначное число при делении на 10 даёт в остатке 3. Если последнюю цифру числа перенести в начало его записи, то полученное число будет на 72 больше первоначального. Найдите исходное число.
10. Найдите четырёхзначное число, кратное 88, все цифры которого различны и чётны. В ответе укажите какое-нибудь одно такое число.
Вариант 10 19. Числа и их свойства (Цифровая запись числа)
1. Вычеркните в числе 141565041 три цифры так, чтобы получившееся число делилось на 30. В ответе укажите ровно одно получившееся число.
2. Приведите пример четырёхзначного числа, кратного 12, произведение цифр которого больше 25, но меньше 30. В ответе укажите ровно одно такое число.
3. Найдите четырёхзначное число, кратное 22, произведение цифр которого равно 60. В ответе укажите какое-нибудь одно такое число.
4. Найдите четырёхзначное натуральное число, меньшее 1360, которое делится на каждую свою цифру и все цифры которого различны и не равны нулю. В ответе укажите какое-нибудь одно такое число.
5. Приведите пример трёхзначного натурального числа, которое при делении на 3, на 5 и на 7 даёт в остатке 2 и в записи которого есть только две различные цифры. В ответе укажите ровно одно такое число.
6. Приведите пример четырёхзначного числа, кратного 12, произведение цифр которого равно 10. В ответе укажите ровно одно такое число.
7. Найдите пятизначное число, кратное 12, любые две соседние цифры которого отличаются на 2. В ответе укажите какое-нибудь одно такое число.
8. Найдите четырёхзначное число, кратное 88, все цифры которого различны и чётны. В ответе укажите какое-нибудь одно такое число.
9. Найдите трехзначное натуральное число, большее 500, которое при делении на 4, на 5 и на 6 дает в остатке 2, и в записи которого есть только две различные цифры. В ответе укажите какое-нибудь одно такое число.
10. Вычеркните в числе 53164018 три цифры так, чтобы получившееся число делилось на 15. В ответе укажите ровно одно получившееся число.
19. Числа и их свойства (Цифровая запись числа)
- 212|422|737
- 642|963
- 242|422|482|602|662|842
- 132|312
- 11265
- 3211
- 63030|69630|63630
- 1272|2172|2712|7212
- 46464|46420|42020
- 84762|85176|54162