Фигуры Лиссажу
Фигу́ры Лиссажу́ — замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях. Впервые изучены французским учёным Жюлем Антуаном Лиссажу. Вид фигур зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний. В простейшем случае равенства обоих периодов фигуры представляют собой эллипсы, которые при разности фаз 0 или вырождаются в отрезки прямых, а при разности фаз
& x(t)=A\sin (at+\delta ) \\ & y(t)=B\sin (bt) \\ \end \right.» width=»» height=»» />
где A, B — амплитуды колебаний, a, b — частоты, δ — сдвиг фаз
Вид кривой сильно зависит от соотношения a/b. Когда соотношение равно 1, фигура Лиссажу имеет вид эллипса, при определённых условиях она имеет вид прямой (A = B, δ = π/2 радиан) и отрезка прямой (δ = 0). Ещё один пример фигуры Лиссажу — парабола (a/b = 2, δ = π/2). При других соотношениях фигуры Лиссажу представляют собой более сложные фигуры, которые являются замкнутыми при условии a/b — рациональное число.
Фигуры Лиссажу, где a = 1, b = N (N — натуральное число) и
Анимация внизу показывает изменение кривых при постоянно возрастающем соотношении » width=»» height=»» /> от 0 до 1 с шагом 0.01. (δ=0)
Примеры фигур Лиссажу ниже с δ = π/2, нечётным натуральным числом a, и также натуральным числом b, и |a − b| = 1.
Фигуры Лиссажу
Фигу́ры Лиссажу́, замкнутые плоские кривые, описываемые точкой, движение которой является суперпозицией двух взаимно перпендикулярных колебаний с отношением частот , равным рациональному числу . Впервые были подробно изучены французским математиком Ж. А. Лиссажу в 1857–1858 гг. Фигуры Лиссажу описываются системой параметрических уравнений (параметр – время t t ):
x = A 1 cos ( ω 1 t + φ 1 ) , _ \cos(< \omega >__), x = A 1 cos ( ω 1 t + φ 1 ) , y = A 2 cos ( ω 2 t + φ 2 ) _ \cos(< \omega >__) y = A 2 cos ( ω 2 t + φ 2 ) при отношении частот ω 2 : ω 1 \omega_ : \omega_ ω 2 : ω 1 , равном рациональному числу. Фигуры Лиссажу вписаны в прямоугольник со сторонами 2 A 1 <2a_> 2 A 1 и 2 A 2 _ 2 A 2 , параллельными соответственно осям x x и y y . Вид фигур Лиссажу зависит от отношения частот ω 2 : ω 1 \omega_ : \omega_ ω 2 : ω 1 и разности фаз △ φ = φ 2 – φ 1 \triangle < \varphi>= < \varphi>_ – < \varphi>_ △ φ = φ 2 – φ 1 обоих колебаний.
Фигуры Лиссажу. Фигуры Лиссажу. В случае равных частот ω 2 : ω 1 = 1 : 1 \omega_ : \omega_ = 1:1 ω 2 : ω 1 = 1 : 1 фигуры Лиссажу представляют собой эллипсы , которые при △ φ = 0 \triangle < \varphi>= 0 △ φ = 0 или ± π \pm \pi ± π вырождаются в отрезки прямых, а при △ φ = ± π / 2 \triangle < \varphi>= \pm \pi /2 △ φ = ± π /2 и A 1 = A 2 _ = _ A 1 = A 2 превращаются в окружность (см. рисунок). При неравных частотах фигуры Лиссажу имеют более сложный вид. Отношение числа касаний фигуры Лиссажу горизонтальной и вертикальной сторон прямоугольника, в который она вписана, даёт отношение частот ω 2 : ω 1 \omega_ : \omega_ ω 2 : ω 1 . Направление движения точки по фигуре Лиссажу определяется разностью фаз △ φ \triangle \varphi △ φ .
Фигуры Лиссажу можно наблюдать, например, на экране осциллографа , подав на его вертикально и горизонтально отклоняющие пластины переменные напряжения с отношением частот, равным рациональному числу. Вид фигур Лиссажу позволяет определить соотношения между частотами и фазами напряжений. При небольшом отклонении отношения частот от рационального числа наблюдается медленное изменение разности фаз во времени и плавное изменение вида фигур Лиссажу.
Опубликовано 11 октября 2023 г. в 13:17 (GMT+3). Последнее обновление 11 октября 2023 г. в 13:17 (GMT+3). Обратная связь
Классическая теория электромагнетизма
Информация
Области знаний: Взаимодействие колебаний и волн со средой и друг с другом
- Научно-образовательный портал «Большая российская энциклопедия»
Свидетельство о регистрации СМИ ЭЛ № ФС77-84198,
выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) 15 ноября 2022 года.
ISSN: 2949-2076 - Учредитель: Автономная некоммерческая организация «Национальный научно-образовательный центр «Большая российская энциклопедия»
Главный редактор: Кравец С. Л.
Телефон редакции: +7 (495) 917 90 00
Эл. почта редакции: secretar@greatbook.ru
- © АНО БРЭ, 2022 — 2023. Все права защищены.
- Условия использования информации. Вся информация, размещенная на данном портале, предназначена только для использования в личных целях и не подлежит дальнейшему воспроизведению.
Медиаконтент (иллюстрации, фотографии, видео, аудиоматериалы, карты, скан образы) может быть использован только с разрешения правообладателей. - Условия использования информации. Вся информация, размещенная на данном портале, предназначена только для использования в личных целях и не подлежит дальнейшему воспроизведению.
Медиаконтент (иллюстрации, фотографии, видео, аудиоматериалы, карты, скан образы) может быть использован только с разрешения правообладателей.
Савельев И.В. Курс общей физики, том I
Главная цель книги — познакомить студентов прежде всего с основными идеями и методами физики. Особое внимание обращено на разъяснение смысли физических законов и на сознательное применение их. Несмотря на сравнительно небольшой объем, книга представляет собой серьезное руководство, обеспечивающее подготовку, достаточную для успешного усвоения в дальнейшем теоретической физики и других физических дисциплин.
Предисловие к четвертому изданию
При подготовке к настоящему изданию книга была значительно переработана. Написаны заново (полностью или частично) параграфы 7, 17, 18, 22, 27, 33, 36, 37, 40, 43, 68, 88. Существенные добавления или изменения сделаны в параграфах 2, 11, 81, 89, 104, 113.
Ранее, при подготовке ко второму и третьему изданиям были написаны заново параграфы 14, 73, 75. Существенные изменения или добавления были внесены в параграфы 109, 114, 133, 143.
Таким образом, по сравнению с первым изданием облик первого тома заметно изменился. Эти изменения отражают методический опыт, накопленный автором последние десять лет преподавания обшей физики в Московском инженерно-физическом институте.
Ноябрь 1969 г. И. Савельев
Из предисловия к четвертому изданию
Предлагаемая вниманию читателей книга представляет собой первый том учебного пособия по курсу общей физики для втузов. Автор в течение ряда лет преподавал общую физику в Московском инженерно-физическом институте. Естественно поэтому, что пособие он писал имея в виду прежде всего студентов инженерно-физических специальностей втузов.
При написании книги автор стремился познакомить учащихся с основными идеями и методами физической науки, научить их физически мыслить. Поэтому книга не является по своему характеру энциклопедичной, содержание в основном посвящено тому, чтобы разъяснить смысл физических законов и научить сознательно применять их. Не осведомленности читателя по максимально широкому кругу вопросов, а глубоких знаний фундаментальным основам физической пауки — вот что стремился добиться автор.
Фигуры Лиссажу
Фигуры Лиссажу — замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях. Простейшая физическая модель для этого — колебание грузика на пружинах, расположенных перпендикулярно друг другу.
Вид фигур зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний.
Примеры графиков [ править ]
На данном изображение можно увидеть наиболее яркие примеры фигур Лиссажу (слева на право) :
- A/B = 1; d = 0.5;
- A/B = 1; d = 0;
- A/B = 1; d = 0.25;
- A/B = 1; d = 0;
- A/B = 3/2; d = 0;
- A/B = 0.9; d = 0;