Почему 1 в степени бесконечность это неопределенность
Перейти к содержимому

Почему 1 в степени бесконечность это неопределенность

Один в степени бесконечность

Рассмотрим, как раскрывается неопределенность один в степени бесконечность в другой форме записи 2 замечательного предела. В этом случае фактически имеем неопределенность один в степени один на ноль.

Второй замечательный предел иначе можно записать так:

а если α=f(x), при условии f(x)→0, при x→0, имеем:

\[\mathop {\lim }\limits_{x \to 0} {(1 + f(x))^{\frac{1}{{f(x)}}}} = e.\]

Рассмотрим на примерах, как раскрыть неопределенность один в степени бесконечность в этом случае.

\[1)\mathop {\lim }\limits_{x \to 0} {(1 + 3x)^{\frac{1}{{5x}}}} = \left[ {{1^{\frac{1}{0}}}} \right] = ?\]

Получили неопределенность один в степени один на ноль. Поскольку

\[\mathop {\lim }\limits_{x \to 0} \frac{C}{x} = \infty ,C = const, \Rightarrow \mathop {\lim }\limits_{x \to 0} {(1 + 3x)^{\frac{1}{{5x}}}} = \left[ {{1^{\frac{1}{0}}}} \right] = \left[ {{1^\infty }} \right] = ?\]

Чтобы воспользоваться модификацией второго замечательного предела и раскрыть неопределенность один в степени бесконечность, рассуждаем так:

\[\mathop {\lim }\limits_{x \to 0} {\left[ {(1 + f(x))} \right]^{g(x)}} = \mathop {\lim }\limits_{x \to 0} {\left\{ {{{\left[ {(1 + f(x))} \right]}^{\frac{1}{{f(x)}}}}} \right\}^{f(x) \cdot g(x)}} = \]

(не забываем о требовании f(x)→0, при x→0).

\[\mathop {\lim }\limits_{x \to 0} {(1 + 3x)^{\frac{1}{{5x}}}} = \mathop {\lim }\limits_{x \to 0} {\left\{ {{{\left[ {1 + 3x} \right]}^{\frac{1}{{3x}}}}} \right\}^{3x \cdot \frac{1}{{5x}}}} = \mathop {\lim }\limits_{x \to 0} {\left\{ {{{\left[ {1 + 3x} \right]}^{\frac{1}{{3x}}}}} \right\}^{\frac{3}{5}}} = {e^{\frac{3}{5}}}.\]

\[2)\mathop {\lim }\limits_{x \to 0} {(1 - 2{x^2} + 3x)^{\frac{3}{{7{x^2}}}}} = \left[ {{1^{\frac{3}{0}}}} \right] = \left[ {{1^\infty }} \right] = \]

\[ = \mathop {\lim }\limits_{x \to 0} {\left\{ {{{\left[ {1 + ( - 2{x^2} + 3x)} \right]}^{\frac{1}{{ - 2{x^2} + 3x}}}}} \right\}^{( - 2{x^2} + 3x) \cdot \frac{3}{{7{x^2}}}}} = {e^{\mathop {\lim }\limits_{x \to 0} \frac{{ - 6{x^2} + 9x}}{{7{x^2}}}}} = \]

Чтобы избавиться от неопределенности ноль на ноль в показателе степени, в числителе выносим за скобки общий множитель x и сокращаем дробь на x:

\[ = {e^{\mathop {\lim }\limits_{x \to 0} \frac{{x( - 6x + 9)}}{{7{x^2}}}}} = {e^{\mathop {\lim }\limits_{x \to 0} \frac{{ - 6x + 9}}{{7x}}}} = \left[ {{e^{\frac{9}{0}}}} \right] = {e^\infty } = \infty .\]

Будьте внимательны! Если в примере нет неопределенности, предел вычисляем непосредственно:

\[3)\mathop {\lim }\limits_{x \to 0} {(1 - 2{x^2} + 3x)^{\frac{3}{{7{x^2} + 1}}}} = {1^3} = 1.\]

\[4)\mathop {\lim }\limits_{x \to 0} {(1 + \sin 3x)^{\frac{1}{{2x}}}} = \left[ {{1^\infty }} \right] = \mathop {\lim }\limits_{x \to 0} {\left[ {{{(1 + \sin 3x)}^{\frac{1}{{\sin 3x}}}}} \right]^{\frac{{\sin 3x}}{{2x}}}} = {e^{\mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x}}{{2x}}}} = \]

Неопределенность вида ноль на ноль в показателе степени — первый замечательный предел:

Методы решения пределов. Неопределённости.
Порядок роста функции. Метод замены

На уроках Пределы. Примеры решений, Замечательные пределы мы рассмотрели азы темы, и данная статья продолжает наше погружение в мир пределов. Помимо закрепления материала, будет много новой информации о методах решения пределов, и, конечно же, примеры, примеры, примеры со всеми техническими тонкостями решений. Качественная проработка урока позволит выйти на уверенный средний уровень даже полному чайнику.

Что необходимо знать и уметь на данный момент?

– Вы должны ПОНИМАТЬ, что такое предел функции. Не выучить, не зазубрить, а именно понять хотя бы на общем, интуитивном уровне. Поэтому, если пределы сродни китайской грамоте, пожалуйста, начните с базового урока Пределы. Примеры решений, а также загляните в справку Графики и свойства элементарных функций, где я проиллюстрировал геометрический смысл понятия.

– Необходимо уметь использовать основные методы решения пределов и справляться с наиболее распространёнными заданиями. Очень хорошо, если кроме примеров моих первых двух уроков, вы порешали (или попытались порешать) что-нибудь дополнительно.

Есть? Едем дальше. Начнём с пары вопросов, которые вызвали недопонимание у некоторых посетителей сайта. За 2 года в отзывах и личной переписке мне удалось выяснить те моменты, которые недостаточно подробно рассмотрены в ранних статьях. И сейчас самое время акцентировать на них внимание.

Первый вопрос затрагивает саму сущность предела. В черновой версии урока я даже процитировал Винни-Пуха: «Куда идём мы с Пятачком, большой-большой секрет». Но потом убрал… нехорошо как-то… выходит все, кто этого не понял – медведи с опилками в голове.

«Чему равен предел ?» (пример условный)

Здесь не указано, куда стремится «икс», и такая запись не имеет смысла:

Предел функции не летает где-то по воздуху на воздушном шаре, он может существовать (или не существовать) только в определённой точке (в частности, в точке или ). Например:

Заодно вспоминаем примитивный, но важный приём – чтобы вычислить предел, сначала нужно попытаться подставить значение «икс» в функцию. В случае с бесконечностью очевидно, что:

Иными словами, если , то функция неограниченно возрастает.

А вот следующего предела не существует:

Значение не входит в область определения функции (под корнем получается «минус»).

рАвно не существует и такого предела:

Тут «икс» стремится к «минус бесконечности», и под корнем нарисуется бесконечно большое отрицательное число.

Итак, в природе не существует «просто предела». Предел может существовать (или не существовать) лишь в определённой точке, в частности, в точке «плюс бесконечность» или «минус бесконечность».

В процессе оформления практических примеров постарайтесь придерживаться следующей рекомендации: не допускайте неполной записи вроде , это одна из самых скверных оплошностей. Презумпция виновности студента утверждает, что он либо совсем не в теме, либо откуда-то впопыхах списал пример.

Второй вопрос касается путаницы с неопределённостями, которые возникают в ходе решения более сложных пределов. Систематизируем информацию:

Что в пределах функций ЯВЛЯЕТСЯ неопределённостью
и НЕ ЯВЛЯЕТСЯ неопределённостью

Прежде всего, перед решением любого предела, обязательно выполняем подстановку «икса» в функцию – неопределённости может и не быть! Однако сладостей много вредно, и на первых двух уроках мы сталкивались со следующими неопределённостями:

Кроме указанных видов, существует довольно распространённая неопределённость («бесконечность минус бесконечность»), которую мы подробно разберём в этой статье, и совсем редко встречаются неопределённости .

Для того чтобы устранить неопределённость, как вы знаете, необходимо использовать некоторые правила и методы решения пределов.

Теперь о том, ЧТО НЕ ЯВЛЯЕТСЯ неопределённостью.

Неопределённостью не является:

Бесконечно малое число, делённое на ненулевую константу: . Сюда же можно отнести бесконечно малое число, делённое на бесконечно большое число:

– Ненулевая константа, делённая на бесконечно малое число, например: .

– Начинающие изучать математический анализ, часто пытаются устранить мифическую неопределённость . Но все попытки тщетны, поскольку это определённость:
представим «бесконечность делить на ноль» в виде произведения: , и, согласно предыдущему пункту: . Приведу живой пример:

Примечание: на практике значок часто записывают без «плюса»: , но, строго говоря, это две разные вещи. Для простоты я буду считать второе обозначение «плюс бесконечностью» и иногда в целях бОльшей чёткости изложения ставить знак «плюс».

– Число, не равное единице, в бесконечно большой степени не является неопределённостью. Например: . В частности: .

– Разность двух функций, каждая из которых стремится к нулю, например: . Таким образом, неопределённости «ноль минус ноль» тоже не существует – это определённость.

Многие из перечисленных неопределённостей и определённостей уже встречались и ещё неоднократно встретятся на практике.

До нового 2013 года остаются считанные дни, и в качестве подарка я принёс увесистый ящик с петардами:

Порядок роста функции

В данном параграфе будут разобраны пределы с многочленами, многочленами под корнем, когда или . Материал вам уже частично знаком, и настала пора разобраться в нём как следует. Давайте научимся находить решение в считанные секунды!

Вычислим следующий предел:

На базовом уроке Пределы. Примеры решений я рекомендовал рассуждать не совсем корректным способом: сначала «икс» равно 10, потом, 100, затем 1000, миллион и т.д. до бесконечности. В чём изъян такого подхода? Построим данную последовательность:

Исходя из полученных результатов, складывается стойкое впечатление, что предел стремится к «минус бесконечности», но на поверку впечатление кардинально ошибочно:

В этой связи необходимо знать теорию матана, а именно, некоторые выкладки о порядке роста функции.

Применительно к нашему примеру можно сказать, что слагаемое обладает более высоким порядком роста, чем сумма . Иными словами, при достаточно больших значениях «икс» слагаемое «перетянет» на «плюс бесконечность» всё остальное:

При небольших значениях «икс» – да, сладкая парочка перетягивает канат в сторону «минус бесконечности», что и привело нас к неверному первоначальному выводу. Но уже при получается гигантское положительное число .

Если сильно уменьшить первое слагаемое, то от этого ничего не изменится: , будет лишь отсрочен тот момент, когда бравая дробь «вытянет» весь предел на «плюс бесконечность». Не поможет и «усиление противовеса»:
.
Нулей можете приписать, сколько хотите (без шуток). Удивительная наука математический анализ – способна низвести любого монстра до мелочи пузатой.

Таким образом, кубическая функция имеет более высокий порядок роста, чем:

– квадратичная функция;
– линейная функция;
– функция-константа;
– сумма квадратичной функции, линейной функции и константы (в любых комбинациях).

На простейшем примере поясню геометрический смысл вышесказанного. Представьте графики линейной , квадратичной и кубической функций (см. методичку Графики и свойства функций). Легко заметить, что при увеличении значений «икс», кубическая парабола взмывает вверх гораздо быстрее и круче, чем парабола и, тем более, прямая.

Аналогичное правило можно сформулировать для любой степени:

Степенная функция данной степени растёт быстрее, чем любая степенная функция более низкой степени. И быстрее, чем сумма любого количества степенных функций более низкой степени.

Значение данного предела зависит только от слагаемого . Всё остальное МЫСЛЕННО отбрасываем: , и теперь ясно как день, что предел стремится к «минус бесконечности»:

То есть, слагаемое более высокого порядка роста, чем всё остальное.

У «хвоста» могут быть сколь угодно большие константы, другие знаки, но результат от этого НЕ ИЗМЕНИТСЯ.

Сравнение бесконечно больших функций

На первом уроке мы вычислили три предела с неопределённостью :

В перечисленных примерах используется стандартный приём деления числителя и знаменателя на «икс» в старшей степени и всё расписывается подробно. Но правильный ответ легко выяснить ещё до решения!

В первом примере в числителе и знаменателе МЫСЛЕННО отбрасываем все младшие слагаемые:
.

В таких случаях говорят, что функции числителя и знаменателя обладают одинаковым порядком роста. Или короче – числитель и знаменатель одного порядка роста. Действительно, в данном пределе и вверху, и внизу находятся квадратичные функции. Мир, равенство, братство.

Во втором примере аналогично – в числителе и знаменателе МЫСЛЕННО уберём всех малышей:

Здесь знаменатель более высокого порядка, чем числитель. Функция-многочлен 4-й степени растёт быстрее кубической функции и «перетягивает» предел на ноль.

И, наконец, в пределе карлики тоже идут лесом:

А в этом примере всё наоборот – числитель более высокого порядка, чем знаменатель. Квадратичная функция растёт быстрее линейной и «перетягивает» предел на «плюс бесконечность».

Сделаем краткую теоретическую выжимку. Рассмотрим две произвольные функции , которые определены на бесконечности.

1) Если , где – ненулевая константа, то функции имеют одинаковый порядок роста. Если , то функции называют эквивалентными на бесконечности.

2) Если , то функция более высокого порядка роста, чем .

3) Если , то функция более высокого порядка роста, чем .

! Примечание: при суть выкладок не меняется.

Подчеркиваю ещё раз, что данные факты относятся к произвольным функциям, определённым на бесконечности, а не только к многочленам. Но у нас ещё непаханое поле полиномов, поэтому, продолжаем работать с ними… да вы не грустите, для разнообразия я добавлю корней =)

В наличии неопределённость и приём решения уже знаком – нужно разделить числитель и знаменатель на «икс» в старшей степени.

Старшая степень числителя равна двум. Знаменатель…. Как определить старшую степень, если многочлен под корнем? МЫСЛЕННО отбрасываем все слагаемые, кроме самого старшего: . Константу тоже отбрасываем и выясняем старшую степень знаменателя: . Она тоже равна двум. Таким образом, числитель и знаменатель одного порядка роста, а значит, предел равен конечному числу, отличному от нуля.

Почему бы сразу не узнать ответ? В числителе и знаменателе МЫСЛЕННО отбрасываем все младшие слагаемые: . Таким образом, наши функции не только одного порядка роста, но ещё и эквивалентны на бесконечности.

Разделим числитель и знаменатель на

В действительности пару шагов можно пропустить, просто я подробно расписал, как в знаменателе под корень вносится .

Это пример для самостоятельного решения. Постарайтесь провести рассуждения по образцу первого примера. Также заметьте, что здесь неопределённость , что необходимо отразить в решении. Примерный образец чистового оформления примера в конце урока.

Во избежание недочёта, всегда анализируйте, какая неопределённость получается в пределах рассматриваемого вида. Помимо неопределённости может встретиться неопределённость либо . Во всех четырёх случаях числитель и знаменатель необходимо разделить на «икс» в старшей степени.

Слишком трудный предел? Лёгкий испуг от хлопушки. Главное, грамотно управиться с радикалами.

Проведём предварительный анализ:

Сначала выясним старшую степень числителя. Там сумма двух корней. Под корнем отбросим младшее слагаемое: и уберём константу: . Под корнем отбросим все младшие слагаемые: .
, значит, старшая степень числителя: .

Разбираемся с нижним этажом. Под корнем отбрасываем константу: . У многочлена старшая степень равна двум.
, значит, старшая степень знаменателя: .
Кстати, заметьте, что корень более высокого порядка роста, чем , поэтому весь знаменатель будет стремиться к «плюс бесконечности».

Сравниваем старшие степени: , следовательно, числитель более высокого порядка роста, чем знаменатель, и сразу можно сказать, что предел будет равен бесконечности.

Оформляем решение, я распишу его максимально подробно:

Разделим числитель и знаменатель на «икс» в старшей степени: :

Действия в числителе прозрачны, закомментирую знаменатель. У дроби «разнокалиберные» корни, и квадратный корень необходимо «подогнать» под кубический корень . Составим и решим уравнение: . Таким образом: .

Ну и на всякий случай напоминаю формулу , по которой выполняется деление:

Другие члены знаменателя:

Правила действий с корнями можно найти на странице Математические формулы и таблицы в методичке Горячие формулы школьного курса математики. Также на действиях с радикалами я подробно останавливался при нахождении производных.

Это более простой пример для самостоятельного решения. В предложенном примере снова неопределённость ( более высокого порядка роста, чем корень ).

Если «икс» стремится к «минус бесконечности»

Призрак «минус бесконечности» уже давно витал в этой статье. Рассмотрим пределы с многочленами, в которых . Принципы и методы решения будут точно такими же, что и в первой части урока, за исключением ряда нюансов.

Рассмотрим 4 фишки, которые потребуются для решения практических заданий:

1) Вычислим предел

Значение предела зависит только от слагаемого , поскольку оно обладает самым высоким порядком роста. Если , то бесконечно большое по модулю отрицательное число в ЧЁТНОЙ степени, в данном случае – в четвёртой, равно «плюс бесконечности»: . Константа («двойка») положительна, поэтому:

2) Вычислим предел

Здесь старшая степень опять чётная, поэтому: . Но перед расположился «минус» (отрицательная константа –1), следовательно:

3) Вычислим предел

Значение предела зависит только от . Как вы помните из школы, «минус» «выскакивает» из-под нечётной степени, поэтому бесконечно большое по модулю отрицательное число в НЕЧЁТНОЙ степени равно «минус бесконечности», в данном случае: .
Константа («четвёрка») положительна, значит:

4) Вычислим предел

Первый парень на деревне снова обладает нечётной степенью, кроме того, за пазухой отрицательная константа, а значит: Таким образом:
.

Используя вышеизложенные пункты, приходим к выводу, что здесь неопределённость . Числитель и знаменатель одного порядка роста, значит, в пределе получится конечное число. Узнаем ответ, отбросив всех мальков:

Разделим числитель и знаменатель на

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

А сейчас, пожалуй, самый тонкий из случаев:

Рассматривая старшие слагаемые, приходим к выводу, что здесь неопределённость . Числитель более высокого порядка роста, чем знаменатель, поэтому сразу можно сказать, что предел равен бесконечности. Но какой бесконечности, «плюс» или «минус»? Приём тот же – в числителе и знаменателе избавимся от мелочи:

Разделим числитель и знаменатель на

Проанализируем бесконечно малые слагаемые знаменателя:

Если , то слагаемые с чётными степенями будут стремиться к бесконечно малым положительным числам (обозначаются через ), а слагаемые с нечётными степенями будут стремиться к бесконечно малым отрицательным числам (обозначаются через ).

Теперь зададимся вопросом, какое из этих четырёх слагаемых будет стремиться к нулю (неважно с каким знаком) медленнее всего? Вспомним наивный приём: сначала «икс» равно –10, потом –100, затем –1000 и т.д. Медленнее всего к нулю будет приближаться слагаемое . Образно говоря, это самый «жирный» ноль, который «поглощает» все остальные нули. По этой причине на завершающем этапе и появилась запись .

Следует отметить, что знаки бесконечно малых слагаемых числителя нас не интересуют, поскольку там нарисовалась осязаемая добротная единичка. Поэтому в числителе я поставил «просто нули». К слову, знаки при нулях не имеют значения и во всех примерах, где в пределе получается конечное число (Примеры №№5,6).

Без измен, на то он и математический анализ, чтобы анализировать =)

Впрочем, о бесконечно малых функциях позже, а то вы нажмёте маленький крестик справа вверху =)

Это пример для самостоятельного решения.

Рекомендую хорошо осмыслить информацию первой части урока, и по возможности сделать перерыв.

Неопределённость «бесконечность минус бесконечность»

Популярная неопределённость устраняется тремя распространёнными способами:

– приведением выражения под знаком предела к общему знаменателю;

– умножением/делением на сопряжённое выражение;

Рассмотрим первый случай, о котором я ещё не рассказывал:

В данном пределе имеет место неопределённость , и общий алгоритм решения незамысловат: необходимо привести выражение к общему знаменателю, а затем попытаться что-нибудь сократить:

(1) Раскладываем знаменатели на множители: в первом знаменателе выносим «икс» за скобки, во втором знаменателе используем формулу разности кубов . Данный шаг можно было пропустить, но этим пришлось бы заниматься потом, и, на мой взгляд, разложение на множители удобнее провести сразу же.

(2) Приводим выражение к общему знаменателю.

(3) Приводим подобные слагаемые в числителе. Неопределённость трансформировалась в неопределённость , которая стандартно раскрывается разложением числителя и знаменателя на множители.

(4) Знаменатель уже разложен на множители. Раскладываем на множители числитель, в данном случае использована формула .

(5) Сокращаем числитель и знаменатель на , устраняя неопределённость.

Как видите, новизны-то особой и нет.

Аналогичное задание для самостоятельного решения:

Решение и ответ в конце урока

Второй вид пределов с неопределённостью представляет собой разность, в которой присутствуют два или один корень:

Каноничный образец. Метод решения подробно разобран на уроке Пределы. Примеры решений. Необходимо умножить и разделить на сопряженное выражение, чтобы потом воспользоваться формулой

Умножим и разделим на сопряженное выражение:

Неопределённость превратилась в неопределённость . Узнаёте? Такие семечки мы грызли в первом разделе данного урока.

Числитель и знаменатель одного порядка роста, а значит, предел равен конечному числу. Разделим числитель и знаменатель на :

Не редкость, когда в разности всего один корень, но это не меняет алгоритма решения:

Это пара коротких примеров для самостоятельного решения.

Следует отметить, что пределы рассмотренного типа не обязаны равняться конечному числу, вполне может получиться и бесконечность, причём, как «плюс», так и «минус». Кстати, в примере №13 можно посмотреть на порядок роста членов, чтобы сразу выяснить ответ 😉

Иногда на практике встречаются пределы-«обманки», в которых неопределённости «бесконечность минус бесконечность» нет вообще, вот простейший пример:

Таким образом, будьте предельно внимательны: перед решением предела необходимо убедиться, что неопределённость действительно есть!

В заключительной части статьи вернёмся к незаслуженно забытым замечательным пределам, где рассмотрим, в том числе, третий тип пределов с неопределённостью .

Метод замены переменной в пределе

Весьма ходовой приём решения. Метод замены переменной применяют чаще всего для того, чтобы свести решение к первому замечательному пределу, намного реже – к другому замечательному пределу. Рассмотрим пару типовых образцов:

В пределе находится арктангенс, от которого хорошо бы избавиться. Логично и очень удобно превратить «арк» в одну единственную букву. Проведём замену переменной: .

Теперь в пределе нужно выразить всё остальное через «тэ».

Во-первых, выясним, куда будет стремиться новая переменная «тэ»:
Если , то , иными словами, новоиспеченная переменная тоже будет стремиться к нулю:

Осталось в знаменателе выразить «икс» через «тэ». Для этого на обе части равенства «навешиваем» тангенсы:

В правой части две взаимно обратные функции уничтожаются:
, откуда:

Взмахи волшебной палочки закончены, остальное просто:

Используемые формулы и приёмы решения завершающего этапа очень подробно разобраны в первой части урока Замечательные пределы.

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Ещё пара занятных примеров на тему замены переменной:

При подстановке единицы в предел получается неопределённость . Замена переменной уже напрашивается, но сначала преобразуем тангенс по формуле . Действительно, зачем нам тангенс?

Заметьте, что , поэтому . Если не совсем понятно, посмотрите значения синуса в тригонометрической таблице. Таким образом, мы сразу избавляемся от множителя , кроме того, получаем более привычную неопределённость 0:0. Хорошо бы ещё и предел у нас стремился к нулю.

Под косинусом у нас находится «икс», который тоже необходимо выразить через «тэ».
Из замены выражаем: .

(1) Проводим подстановку

(2) Раскрываем скобки под косинусом.

(3) Используем формулу приведения , формулы приведения также можно найти в тригонометрических таблицах.

(4) Чтобы организовать первый замечательный предел , искусственно домножаем числитель на и обратное число .

Задание для самостоятельного решения:

Полное решение и ответ в конце урока.

Это были несложные задачи в своём классе, на практике всё бывает хуже, и, помимо формул приведения, приходится использовать самые разные тригонометрические формулы, а также прочие ухищрения. В статье Сложные пределы я разобрал пару настоящих примеров =)

В канун праздника окончательно проясним ситуацию ещё с одной распространённой неопределённостью:

Устранение неопределённости «единица в степени бесконечность»

Данную неопределённость «обслуживает» второй замечательный предел, и во второй части того урока мы очень подробно рассмотрели стандартные примеры решений, которые в большинстве случаев встречаются на практике. Сейчас картина с экспонентами будет завершена, кроме того, заключительные задания урока будут посвящены пределам-«обманкам», в которых КАЖЕТСЯ, что необходимо применить 2-й замечательный предел, хотя это вовсе не так.

Недостаток двух рабочих формул 2-го замечательного предела состоит в том, что аргумент должен стремиться к «плюс бесконечности» либо к нулю. Но что делать, если аргумент стремится к другому числу?

На помощь приходит универсальная формула (которая на самом деле является следствием второго замечательного предела):

Неопределённость можно устранить по формуле:

Где-то вроде уже пояснял, что обозначают квадратные скобки. Ничего особенного, скобки как скобки. Обычно их используют, чтобы чётче выделить математическую запись.

Выделим существенные моменты формулы:

1) Речь идёт только о неопределённости и никакой другой.

2) Аргумент «икс» может стремиться к произвольному значению (а не только к нулю или ), в частности, к «минус бесконечности» либо к любому конечному числу.

С помощью данной формулы можно решить все примеры урока Замечательные пределы, которые относятся ко 2-му замечательному пределу. Например, вычислим предел :

В данном случае , и по формуле :

Правда, делать так не советую, в традициях всё-таки применять «обычное» оформление решения, если его можно применить. Однако с помощью формулы очень удобно выполнять проверку «классических» примеров на 2-й замечательный предел.

Всё это хорошо, правильно, но сейчас в кадре более любопытные кадры:

На первом шаге, не устану повторять, подставляем значение «икс» в выражение под знаком предела. А вдруг никакой неопределённости вообще нет? Так бывает! Но не в этот раз. Подставляя «тройку», приходим к выводу, что здесь неопределённость

Чтобы не таскать за собой букву «е» и не мельчить, показатель удобнее вычислить отдельно:

В данном случае:

С точки зрения техники вычислений всё рутинно: сначала приводим первое слагаемое к общему знаменателю, затем выносим константы и проводим сокращения, избавляясь от неопределённости 0:0.

Обещанный подарок с разностью логарифмов и неопределённостью :

Сначала полное решение, потом комменты:

(1)-(2) На первых двух шагах используем формулы . У сложных производных мы «разваливаем» логарифмы, а здесь, наоборот – их нужно «собрать».

(3) Значок предела перемещаем под логарифм. Это можно сделать, поскольку данный логарифм непрерывен на «минус бесконечности». Кроме того, предел же относится к «начинке» логарифма.

(4)-(5) Стандартным приёмом, рассмотренным на базовом уроке про замечательные пределы, преобразуем неопределённость к виду .

(6) Используем формулу .

(7) Экспоненциальная и логарифмическая функция – взаимно обратные функции, поэтому и «е» и логарифм можно убрать. Действительно, согласно свойству логарифма: . Минус перед дробью вносим в знаменатель:

(8) Без комментариев =)

Рассмотренный тип предела не такой редкий, примеров 30-40 у себя нашёл.

Это пример для самостоятельного решения. Помимо использования формулы, можно представить предел в виде и заменой свести решение к случаю .

В заключение рассмотрим пределы-«фальшивки».

Вернёмся к неопределённости . Данную неопределённость далеко не всегда можно свести к неопределённости и воспользоваться 2-м замечательным пределом либо формулой-следствием. Преобразование осуществимо в том случае, если числитель и знаменатель основания степени – эквивалентные бесконечно большие функции. На пример: .

Отвлечёмся от показателя и вычислим предел основания:

В пределе получена единица, значит, числитель и знаменатель не просто одного порядка роста, а ещё и эквивалентны. На уроке Замечательные пределы. Примеры решений мы без проблем свели данный пример к неопределённости и получили ответ.

Аналогичных пределов можно придумать очень много:
и т.д.

Дроби данных примеров объединяет вышеуказанная особенность: . В других случаях при неопределённости 2-й замечательный предел не применим.

Как ни старайся, а неопределённость не удастся преобразовать в неопределённость

Здесь числители и знаменатели оснований одного порядка роста, но не эквиваленты: .

Таким образом, 2-й замечательный предел и, тем более формулу, ПРИМЕНИТЬ НЕЛЬЗЯ.

! Примечание: не путайте с Примером №18, в котором числитель и знаменатель основания не эквивалентны. Там готовая неопределённость , здесь же речь идёт о неопределённости .

Метод решения пределов-«подделок» прост и знакОм: нужно числитель и знаменатель основания разделить на «икс» в старшей степени (невзирая на показатель):

Если числитель и знаменатель основания разного порядка роста, то приём решения точно такой же:

Это короткие примеры для самостоятельного изучения

Иногда неопределённости может не быть вообще:

Подобные фокусы особенно любимы составителями сборника Кузнецова. Вот почему очень важно ВСЕГДА на первом шаге выполнять подстановку «икса» в выражение под знаком предела!

Завершая тотальное разоблачение пределов, я хочу поздравить всех посетителей сайта с новым 2013 годом! С подарком я успел, и постинг данной статьи осуществлен 31 декабря 2012 года. Вы спросите, а как же моя личная подготовка к празднику? Давно готов =) На протяжении многих лет я занимаюсь стратегическим планированием – чтобы не толкаться в очередях до и не пересекаться с краснокожими после =)

Решения и ответы:

Пример 2

Старшая степень числителя: 2; старшая степень знаменателя: 3.
Разделим числитель и знаменатель на :

Пример 4

Разделим числитель и знаменатель на :

Примечание: самым последним действием умножили числитель и знаменатель на , чтобы избавиться от иррациональности в знаменателе.

Пример 6

Разделим числитель и знаменатель на :

Пример 8

Разделим числитель и знаменатель на :

Примечание: слагаемое стремится к нулю медленнее, чем , поэтому является «главным» нулём знаменателя.

Пример 10

Пример 12

Умножим и разделим на сопряженное выражение:

Пример 13

Умножим и разделим на сопряженное выражение:

Разделим числитель и знаменатель на :

Пример 17

Проведём замену:
Если , то .
Далее используем формулу приведения , тригонометрическую формулу и первый замечательный предел:

Пример 20

Используем формулу

Пример 22

Примечание: бесконечно малая функция стремится к нулю медленнее, чем , поэтому «более большой» ноль знаменателя играет определяющую роль:

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам,

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

© Copyright mathprofi.ru, Александр Емелин, 2010-2023. Копирование материалов сайта запрещено

Научный форум dxdy

В учебнике Фихтенгольца доказывается, что n^(1/n) — корень n-ной степени из n = 0 при n стремится к бесконечности (том 1, стр.66).
Отсюда следует, что 1 в степени бесконечность стремится к бесконечности (к n). Это мне не понятно. Для меня было очевидно, что 1 в любой степени стремится к 1. Так ли это и почему получается, что 1 в степени бесконечность равно бесконечности? Прошу объяснить или подсказать где почитать разъяснение этого.

Re: 1 в степени бесконечность
14.03.2010, 19:23

Заслуженный участник

Последний раз редактировалось meduza 14.03.2010, 19:23, всего редактировалось 1 раз.

$\left(1^<\infty></p> <p>\right)$» /> — неопределённость и может стремиться к чему угодно или же не стремится ни к чему. Про пределы и раскрытие неопределённостей есть в любом учебнике матана, в том же Фихтенгольце или его lite-версии Пискунов.</p> <p>P. S. Правила форума обязывают использовать TeX.</p> <p><b>Re: 1 в степени бесконечность</b><br /> 14.03.2010, 19:23</p> <table cellspacing= Заслуженный участник

$\lim\limits_<n\to\infty></p> <p>Напишите предел, который Вас интересует. Например, \sqrt[n] n =1$» />.</p> <p><b>Re: 1 в степени бесконечность</b><br /> 14.03.2010, 19:28<br /> <b>meduza в сообщении #297689</b> писал(а):</p> <p><img decoding=

\right)$» /> — неопределённость и может стремиться к чему угодно или же не стремится ни к чему.

При каких условиях тогда он стремится к 1 и при каких — к бесконечности?
Re: 1 в степени бесконечность
14.03.2010, 19:30

Заслуженный участник

Последний раз редактировалось meduza 14.03.2010, 19:31, всего редактировалось 1 раз.

$e$

zaqwedcvbgt
Зависит от конкретного предела. Например, второй замечательный равен .

Re: 1 в степени бесконечность
14.03.2010, 19:33

Заслуженный участник

Так какой конкретно предел Вас интересует. А там посмотрим, чего «в общем» говорить.
Re: 1 в степени бесконечность
14.03.2010, 19:40

Padawan
Я читаю последовательно учебник для общего развития. Мне непонятно, поэтому спрашиваю.

$\lim\limits_<n\to\infty></p> <p> \sqrt[n] n =1$» />.<br />Почему нельзя тогда возвести правую и левую часть в степень n и получить, что 1 в степени n стремится к бесконечности вообще?</p> <p><b>Re: 1 в степени бесконечность</b><br /> 14.03.2010, 19:55</p> <table cellspacing= Заслуженный участник

zaqwedcvbgt в сообщении #297702 писал(а):
Почему нельзя тогда возвести правую и левую часть в степень n

$n$— это внутренняя (вне предела $n$не существует) переменная (а не число и $n\neq\infty$, да и $\infty$— тоже не число) предела. Вернитесь в учебнике назад и вникните в определение предела, а потом идите дальше неспеша.

Re: 1 в степени бесконечность
14.03.2010, 19:58

Заслуженный участник

Возводя, получим слева
$\lim\limits_<n\to\infty>\left (\lim\limits_ <n\to\infty>\sqrt[n] n\right)^n$» /><br />А это не равно<br /> <img decoding=\left (\sqrt[n] n\right )^n$» />

Re: 1 в степени бесконечность
14.03.2010, 20:01

Заблокирован

Цитата:

Почему нельзя тогда возвести правую и левую часть в степень n и получить, что 1 в степени n стремится к бесконечности вообще?

$\lim\limits_<n\to\infty></p> <p>Потому что нельзя перемножать неограниченное число пределов. Примените это к такому примеру:<br />\left(1+\frac\right)=1=\lim\limits_<n\to\infty>\left(1+\frac\right)$» /></p> <p><b>Re: 1 в степени бесконечность</b><br /> 15.03.2010, 09:56</p> <table cellspacing= Заслуженный участник

Padawan в сообщении #297713 писал(а):

$\lim\limits_<n\to\infty></p> <p>Возводя, получим слева<br />\left (\lim\limits_ <n\to\infty>\sqrt[n] n\right)^n$» /></p> <p><img decoding=

Ну нельзя же так небрежно. Можно только \left (\lim\limits_ \sqrt[n] n\right)^m$» />.

Re: 1 в степени бесконечность
15.03.2010, 10:12

Wolfram Mathematica (конечно, не истина в последней, но все же. ) выдаёт:
$<1^<\infty>> \to Indeterminate$» /><br /> <img decoding=1^n=1$» />
$\lim\limits_<n\to\infty>\left (\sqrt[n] n\right )^n=1$» /><br /><img decoding=\left (\lim\limits_ \sqrt[n] n\right)^m=1$» />(!!)

Re: 1 в степени бесконечность
15.03.2010, 10:45

Заслуженный участник

Lesobrod в сообщении #297881 писал(а):

$\lim\limits_<n\to\infty>\left (\sqrt[n] n\right )^n=1$» /><br /><img decoding=\left (\lim\limits_ \sqrt[n] n\right)^m=1$» />(!!)

Неужто так с восклицательными знаками и выдаёт.

$\lim\limits_<m\to\infty></p> <p>А удивляться тут нечему. Вольфрам — он достаточно умный; во всяком случае уж что-что, а подстановки делать умеет. И понимает, что 1^m=1$» />.</p> <p><b>Re: 1 в степени бесконечность</b><br /> 15.03.2010, 10:47</p> <table cellspacing= Заслуженный участник

$\lim\limits_<n\to\infty></p> <p>А Wolfram Mathematica на такое будет ругаться? <br />\left (\lim\limits_ <n\to\infty>\sqrt[n] n\right)^n$» /></p> <p>— Пн мар 15, 2010 10:49:03 —</p> <p><b>Lesobrod в сообщении #297881</b> писал(а):</p> <p>Wolfram Mathematica (конечно, не истина в последней, но все же. ) выдаёт:<br /><img decoding=> \to Indeterminate$» />
$\lim\limits_<n\to\infty>1^n=1$» /><br /> <img decoding=\left (\sqrt[n] n\right )^n=1$» />

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *