Докажите что мощность выделяемая на внешнем участке цепи максимальна при равенстве
Перейти к содержимому

Докажите что мощность выделяемая на внешнем участке цепи максимальна при равенстве

Докажите, что мощность, выделяемая на внешнем участке цепи, максимальна при равенстве электрического сопротивления внешнего

Пожалуйста, войдите или зарегистрируйтесь для публикации ответа на этот вопрос.

решение вопроса

Связанных вопросов не найдено

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические 43,679
  • гуманитарные 33,657
  • юридические 17,917
  • школьный раздел 612,555
  • разное 16,911

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

  • Обратная связь
  • Правила сайта

Докажите что мощность выделяемая на внешнем участке цепи максимальна при равенстве

ЛАБОРАТОРНАЯ РАБОТА № 3.7.

ИССЛЕДОВАНИЕ ПОЛЕЗНОЙ МОЩНОСТИ И КПД ИСТОЧНИКОВ ТОКА

Фамилия И.О. _____________ Группа ______ Дата ______

Цель данной работы – экспериментально проверить теоретические выводы о зависимости полезной мощности и КПД источника тока от сопротивления нагрузки.

Электрическая цепь состоит из источника тока, подводящих проводов и нагрузки или потребителя тока. Каждый из этих элементов цепи обладает сопротивлением.

Сопротивление подводящих проводов обычно бывает очень мало, поэтому им можно пренебречь. В каждом участке цепи будет расходоваться энергия источника тока. Весьма важное практическое значение имеет вопрос о целесообразном расходовании электрической энергии.

Полная мощность Р, выделяемая в цепи, будет слагаться из мощностей, выделяемых во внешней и внутренней частях цепи: P = I 2 ·R + I 2 ·r = I 2 (R + r). Так как I(R + r) = ε, то Р =I·ε,

где R – внешнее сопротивление; r – внутреннее сопротивление; ε – ЭДС источника тока.

Таким образом, полная мощность, выделяемая в цепи, выражается произведением силы тока на ЭДС элемента. Эта мощность выделяется за счет каких-либо сторонних источников энергии; такими источниками энергии могут быть, например, химические процессы, происходящие в элементе.

Рассмотрим, как зависит мощность, выделяемая в цепи, от внешнего сопротивления R, на которое замкнут элемент. Предположим, что элемент данной ЭДС и данного внутреннего сопротивления r замыкается внешним сопротивлением R; определим зависимость от R полной мощности Р, выделяемой в цепи, мощности Ра, выделяемой во внешней части цепи и КПД.

Сила тока I в цепи выражается по закону Ома соотношением

Полная мощность, выделяемая в цепи, будет равна

При увеличении R мощность падает, стремясь асимптотически к нулю при неограниченном увеличении R.

Мощность, выделяющаяся во внешней части цепи, равна

Отсюда видно, что полезная мощность Ра равна нулю в двух случаях – при R = 0 и R = ∞.

Исследуя функцию Ра = f(R) на экстремум, получим, что Ра достигает максимума при R = r, тогда

Чтобы убедится в том, что максимум мощности Ра получается при R = r, возьмем производную Ра по внешнему сопротивлению

По условию максимума требуется равенство нулю первой производной

r 2 = R 2

R = r

Можно убедиться, что при этом условии мы получим максимум, а не минимум для Ра, определив знак второй производной .

Коэффициент полезного действия (КПД) η источника ЭДС это величина отношения мощности Ра, выделяющейся во внешней цепи, к полной мощности Р, развиваемой источником ЭДС.

В сущности КПД источника ЭДС указывает, какая доля работы сторонних сил преобразуется в электрическую энергию и отдается во внешнюю цепь.

Выражая мощность через силу тока I, разность потенциалов во внешней цепи U и величину электродвижущей силы ε, получим

То есть КПД источника ЭДС равен отношению напряжения во внешней цепи к ЭДС. В условиях применимости закона Ома можно далее заменить U = IR; ε = I(R + r), тогда

Следовательно, в том случае, когда вся энергия расходуется на Ленц-Джоулево тепло, КПД источника ЭДС равен отношению внешнего сопротивления к полному сопротивлению цепи.

При R = 0 имеем η = 0. С увеличением R, КПД возрастает, стремится к значению η=1 при неограниченном увеличении R, однако при этом мощность, выделяющаяся во внешней цепи, стремится к нулю. Таким образом, требования одновременного получения максимальной полезной мощности при максимальном КПД невыполнимы.

Когда Ра достигает максимума, то η = 50%. Когда же КПД η близок к единице, полезная мощность мала по сравнению с максимальной мощностью, которую мог бы развивать данный источник. Поэтому для увеличения КПД необходимо по возможности уменьшать внутреннее сопротивление источника ЭДС, например, аккумулятора или динамо-машины.

В случае R = 0 (короткое замыкание) Ра = 0 и вся мощность выделяется внутри источника. Это может привести к перегреву внутренних частей источника и выводу его из строя. По этой причине короткие замыкания источников (динамо-машины, аккумуляторные батареи) недопустимы!

На рис. 1 кривая 1 дает зависимость мощности Ра, выделяемой во внешней цепи, от сопротивления внешней части цепи R; кривая 2 дает зависимость от R полной мощности Р; кривая 3 – ход КПД η от того же внешнего сопротивления.

Порядок выполнения работы

1. Ознакомиться со схемой на стенде.

2. Установить с помощью магазина сопротивление R = 100 Ом.

3. Замкнуть ключ К.

4. Произвести измерения силы тока в цепи последовательно для различных девяти сопротивлений на магазине сопротивлений, начиная от 100 Ом и выше. Внести в таблицу результаты измерений силы тока, выразив их в амперах.

5. Выключить ключ К.

6. Вычислить для каждого сопротивления Р, Ра (в ваттах) и η.

7. Построить графики Р, Ра и η от R.

Контрольные вопросы

1. Что называется КПД источника ЭДС?

2. Вывести формулу КПД источника ЭДС.

3. Что такое полезная мощность источника ЭДС?

4. Вывести формулу полезной мощности источника ЭДС.

5. Чему равна максимальная мощность, выделяемая во внешней цепи (Ра)max?

6. При каком значении R полная мощность Р, выделяющаяся в цепи, максимальна?

7. Чему равен КПД источника ЭДС при (Ра)max?

8. Произвести исследование функции (Ра) = f(R) на экстремум.

9. Зарисовать график зависимости Р, Ра и η от внешнего сопротивления R.

10. Что такое ЭДС источника?

11. Почему сторонние силы должны быть не электрического происхождения?

12. Почему недопустимо короткое замыкание для источников напряжения?

I·10 -3 , A

, Вт

, Вт

Мощность, выделяемая во внешней цепи с потребителями

Решение задач на экстремум с компьютерной поддержкой

Предлагаемые задачи рассматриваются с учениками 10-х и 11-х классов на заседании школьного физического кружка. Они требуют знаний по теме «Законы постоянного тока», умения исследовать функции на экстремум при помощи производной, а также навыков программирования на компьютере.

ЗАДАЧА 1. Найдите зависимость мощности, выделяемой во внешней цепи, от числа одинаковых потребителей (лампочек), соединённых параллельно. ЭДС источника , его внутреннее сопротивление r.

Пусть сопротивления всех лампочек одинаковы R1 = R2 = . = Rn, P – мощность, выделяемая во внешней цепи, P1 – мощность, выделяемая на каждой лампочке. Очевидно, что P = nP1; P1 = I1 2 R1, где I1 – ток, проходящий через каждую лампочку.

Сила тока в неразветвлённой цепи:

Применяя первое правило Кирхгофа, имеем

С учётом (2) имеем для мощности

Полная мощность, выделяемая во внешней цепи:

Нетрудно заметить , что если n , то P 0. Это означает, что при неограниченном увеличении количества лампочек мы не достигнем бесконечного увеличения мощности, выделяемой во внешней цепи. Напротив, мощность будет стремиться к нулю.

Из формулы (3) следует также, что если r 0, то P n 2 /R. То есть, если источник тока идеален (r = 0), то мощность возрастает прямо пропорционально числу потребителей в цепи. Но внутреннее сопротивление источника тока не может быть равно нулю, поэтому достигнуть бесконечного увеличения мощности во внешней цепи за счёт увеличения числа потребителей невозможно. Напротив, достигнув максимума, мощность, выделяемая во внешней цепи, начнёт уменьшаться с ростом потребителей.

Для получения полной картины зависимости мощности Р от количества потребителей n, можно предложить учащимся построить график зависимости P(n) на компьютере ( = 20 В, r = 0,5 Ом, R1 = 100 Ом). В рубрике «Дополнительные материалы» на сайте газеты http://fiz.1september.ru приводим авторскую компьютерную программу WATT для построения вышеупомянутой зависимости (среда программирования QBasic, компьютер Celeron1300).

Изменяя внутреннее сопротивление r при неизменных и R1, делаем вывод: мощность P, выделяемая во внешней цепи, убывает с ростом r. Изменяя R1 при неизменных и r, делаем вывод: от сопротивления одной лампочки максимум мощности P не зависит. Этот максимум сдвигается вправо при увеличении R1 и сдвигается влево при уменьшении R1. Число ламп в цепи, при котором наблюдается максимум мощности, равно nmax = R1/r. То есть мощность, выделяемая во внешней цепи, максимальна, если внутреннее сопротивление источника тока равно внешнему сопротивлению цепи: r = R1/ nmax. Расчётные результаты отлично согласуются с результатами следующей, похожей, задачи.

ЗАДАЧА 2. При каком значении R мощность, выделяемая во внешней цепи, максимальна? ЭДС источника тока , внутреннее сопротивление r.

Получим формулу зависимости мощности P, выделяемой во внешней цепи, от внешнего сопротивления R и исследуем функцию P(r) на экстремум при помощи производной.

По закону Ома для полной цепи, ток I =/(R + r), мощность, выделяемая во внешней цепи:

Найдём критические точки из условия P’ = 0:

Имеем две критические точки R = –r и R = r . Но т.к. R > 0, то R = –r не имеет смысла. Производная P’ меняет знак с «+» на «–» в точке R = r, следовательно, R = r – точка минимума.

Итак, мощность максимальна, если R = r, т.е. внутреннее сопротивление источника тока равно внешнему сопротивлению. Это означает, что применительно к задаче 1 максимум мощности наблюдается при R = r, но т.к. сопротивление n одинаковых ламп равно R = R1/n, то r = R1/n, или n = nmax = R1/r.

Рассчитаем максимум мощности, используя формулу (3) и условие r = R1/n:

При = 12 В, r = 0,4 Ом и R1= 20 Ом имеем nmax = R1/r = 50 ламп.

Согласно формуле (4), Pmax = 90 Вт. Всё это очень хорошо согласуется с результатами компьютерного эксперимента. Кроме того, из этой формулы следует, что максимум мощности зависит от внутреннего сопротивления обратно пропорционально, в чём легко убедиться, используя компьютерную программу WATT, приведённую на сайте газеты http://fiz.1september.ru.

В заключение необходимо сказать, что все выше приведённые выкладки, а также результаты, полученные с помощью компьютерной программы для цепей постоянного тока, справедливы и для цепей переменного тока.

Возможен более современный подход, если использовать для моделирования таблицу МicrosoftExcel. Если R – внешнее сопротивление цепи, то Построим график для тех же данных: 1 = 20 В, r = 0,5 Ом, меняя R от 0,1 до 2,7 Ом с шагом 0,1 Ом. Для этого в ячейку B4 введём формулу =$B$1^2*A4/(A4+$B$2)^2 и скопируем её в ячейки В5–В30. Графики, построенные с помощью таблицы Excel и программы WATT, совпадают (максимум мощности 200 Вт получается, если внешнее сопротивление цепи равно внутреннему сопротивлению источника тока). В рубрике «Дополнительные материалы» к № 9/2008 на сайте газеты приведена программа «Мощность», аналогичная программе WATT, но на более продвинутом языке VisualBasic6.0, результат расчёта с её помощью, а также таблица МicrosoftExcel.

Сергей Николаевич Карташов – учитель физики высшей квалификационной категории, выпускник физфака МПГУ им. В.И.Ленина 1993 г. Педагогический стаж 14 лет. Ученики Сергея Владимировича занимают призовые места на районных олимпиадах по физике и математике. Педагогическое кредо: моделирование физических процессов на компьютере, индивидуальная работа с сильными детьми. Один закончил физфак МГУ им. М.В.Ломоносова, ещё один учится в университете им. Н.Э.Баумана. В 2002 г. Сергей Владимирович был награждён почётной грамотой МОиН РФ. Женат, сыну 3,5 года. Хобби: шахматы, решение олимпиадных задач по физике и математике, кулинария.

Исследование зависимости мощности и КПД источника тока от внешней нагрузки

I- сила тока в цепи; Е- электродвижущая сила источника тока, включённого в цепь; R- сопротивление внешней цепи; r- внутреннее сопротивление источника тока.

МОЩНОСТЬ, ВЫДЕЛЯЕМАЯ ВО ВНЕШНЕЙ ЦЕПИ

. (2)

Из формулы (2) видно, что при коротком замыкании цепи (R®0) и при R® эта мощность равна нулю. При всех других конечных значениях R мощность Р1> 0. Следовательно, функция Р1 имеет максимум. Значение R0, соответствующее максимальной мощности, можно получить, дифференцируя Р1 по R и приравнивая первую производную к нулю:

. (3)

Из формулы (3), с учётом того, что R и r всегда положительны, а Е ? 0, после несложных алгебраических преобразований получим:

Следовательно, мощность, выделяемая во внешней цепи, достигает наибольшего значения при сопротивлении внешней цепи равном внутреннему сопротивлению источника тока.

При этом сила тока в цепи (5)

равна половине тока короткого замыкания. При этом мощность, выделяемая во внешней цепи, достигает своего максимального значения, равного

. (6)

Когда источник замкнут на внешнее сопротивление, то ток протекает и внутри источника и при этом на внутреннем сопротивлении источника выделяется некоторое количество тепла. Мощность, затрачиваемая на выделение этого тепла равна

. (7)

Следовательно, полная мощность, выделяемая во всей цепи , определится формулой

= I 2 (R+r) = IE (8)

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ источника тока равен . (9)

Из формулы (8) следует, что

, (10)

т.е. Р1 изменяется с изменением силы тока в цепи по параболическому закону и принимает нулевые значения при I = 0 и при . Первое значение соответствует разомкнутой цепи ( R>> r ), второе – короткому замыканию ( R

(11)

Таким образом, к.п.д. достигает наибольшего значения h =1 в случае разомкнутой цепи ( I = 0), а затем уменьшается по линейному закону, обращаясь в нуль при коротком замыкании.

Зависимость мощностей Р1, Рполн = EI и к.п.д. источника тока от силы тока в цепи показаны на рис.1.

Статья 34 - Картинка 15

Из графиков видно, что получить одновременно полезную мощность и к.п.д. невозможно. Когда мощность, выделяемая на внешнем участке цепи Р1, достигает наибольшего значения, к.п.д. в этот момент равен 50%.

МЕТОДИКА И ПОРЯДОК ИЗМЕРЕНИЙ

Статья 34 - Картинка 16

Соберите на экране цепь, показанную на рис. 2. Для этого сначала щелкните левой кнопкой мыши над кнопкой э.д.с. в нижней части экрана. Переместите маркер мыши на рабочую часть экрана, где расположены точки. Щелкните левой кнопкой мыши в рабочей части экрана, где будет расположен источник э.д.с.

Разместите далее последовательно с источником резистор, изображающий его внутреннее сопротивление (нажав предварительно кнопку в нижней части экрана) и амперметр (кнопка там же). Затем расположите аналогичным образом резисторы нагрузки и вольтметр , измеряющий напряжение на нагрузке.

Подключите соединительные провода. Для этого нажмите кнопку провода внизу экрана, после чего переместите маркер мыши в рабочую зону схемы. Щелкайте левой кнопкой мыши в местах рабочей зоны экрана, где должны находиться соединительные провода.

4. Установите значения параметров для каждого элемента. Для этого щелкните левой кнопкой мыши на кнопке со стрелкой . Затем щелкните на данном элементе. Подведите маркер мыши к движку появившегося регулятора, нажмите на левую кнопку мыши и, удерживая ее в нажатом состоянии, меняйте величину параметра и установите числовое значение, обозначенное в таблице 1 для вашего варианта.

Таблица 1. Исходные параметры электрической цепи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *