Какое это шанс 9e 4
Перейти к содержимому

Какое это шанс 9e 4

Как подсчитать какой шанс выпадения числа в random.uniform?

Имеется простенький код который проверяет число на выпадение. но как мне узнать шанс, и сколько попыток нужно для этого выпадения?

import random for x in range(9999999999999999999999999999999999999999999999999999999999): r = str(random.uniform(0.0000001, 1)) if r[8] == '1' and r[7] == '0' and r[6] == '0' and r[5] == '0' and r[4] == '0' and r[3] == '0' and r[2] == '0' and r[1] == '.' and r[0] == '0': print(r) 

Отслеживать
4,925 6 6 золотых знаков 11 11 серебряных знаков 29 29 бронзовых знаков
задан 29 мая 2022 в 5:02
23 2 2 бронзовых знака
Вот это задача! Класс! Автор всех обвёл вокруг пальца!
29 мая 2022 в 15:12

2 ответа 2

Сортировка: Сброс на вариант по умолчанию

Вопрос не столько о Python, сколько о том, как считать вероятности, при этом с неожиданным для кого-то выводом:-) (но на результат Python повлияет изрядно). Судя по вопросу, спрашивает школьник, кто это не проходил пока, тогда обойдемся без умных формул. Но для начала предлагаю совершенно непитоническую строку поменять на её нормальный эквивалент — легче понять, что хотим. Да и начальное условие тоже поменяем на более читаемое, так как явно речь идёт о бесконечном цикле.

Внимание: учитывая ответ @Stanislav Volodarskiy ниже, необходимо изменить желаемую последовательность для сравнения, чтобы совпадение было иногда. Например, на 1000001.

import random while True: r = str(random.uniform(0.0000001, 1)) # Первые два символа - всегда '0.' И вместо 0000001 поставлено 1000001. if r[2:9] == '1000001': print(r) 

Итого, видим, что речь идет о совпадении всех 7 символов.

Шанс на совпадение одного — 1 к 10 (1 нуль после 1). Значит, вероятность совпадения всех семи — 1 к 10 000 000 (семь нулей после 1) — один к десяти миллионам.

Попыток надо усреднённо — тоже десять миллионов, но так как генератор случайный (условно, на самом деле — псевдослучайный), то может совпасть с первой попытки, а может не совпасть никогда (если у псевдослучайного генератора это число не выпадает в течение периода последовательности).

Астроном: Шанс, что мы живем в симуляции составляет 50%

Астроном: Шанс, что мы живем в симуляции составляет 50%

В работе 2003 года философ из Оксфорда Ник Бостром выдвинул предположение, что наша реальность — это не более, чем компьютерная симуляция, созданная технологически продвинутой цивилизацией. В своей публикации Бостром предположил, что по крайней мере одно из трех предположений должно быть истиной.

Вот эти три предположения:

  • Обычно цивилизации вымирают до того, как достигают возможности создать симуляции реальности
  • Продвинутые цивилизации не заинтересованы в создании симуляций реальности
  • Скорее всего мы уже живем внутри симуляции реальности

На эту тему мы неоднократно писали материалы, рассказывая про других ученых и исследователей, допускающих вероятность такой симуляции. Теперь же астроном из колумбийского университета сделал вывод, что шанс нашего существования в симуляции сводится к 50%.

Ученый Дэвид Киппинг соединил два предположения Бострома в одно, утверждая, что они оба приводят к одному результату — что мы не живем внутри симуляции.

Необходимо приписать предшествующую вероятность для каждой из этих моделей. Мы просто допускаем принцип безразличия, что является базовым допущением, когда нет данных или склонностей к тому или ному выводу.

Киппинг также считает, что чем больше слоев симуляции (матрешка), тем меньше вычислительных ресурсов требуется для создания убедительной симлуяции. Более того, если человечество создаст первую убедительную симуляцию жизни, это станет почти окончательным подтверждением, что мы не можем жить в первоначальной реальности.

Тем временем некоторые ученые считают, что ответ на вопрос симуляции будет получен уже в ближайшие десятилетия, пока же все эти рассуждения не имеют четких доказательств.

Больше статей на Shazoo

  • Игрок War Thunder вновь опубликовал секретное военное руководство НАТО
  • Новый дневник Cities: Skylines 2 посвящен симуляции жителей города
  • Сборы Star Citizen достигли $600 миллионов — даты выхода так и нет

Антивакцинаторы и теория игр, или математические основы антивакцинаторского движения

Несмотря на злободневность, идея этой заметки родилась задолго до известных событий. Задачка является любопытным математическим этюдом и прямо просится к рассмотрению через призму теории игр, хотя в этом ключе практически не освещается. Даже люди с хорошим математическим пониманием склонны игнорировать её игровую природу. В прогрессивных кругах при взгляде на людей, выступающих против вакцинации, принято задумчиво хмуриться и пожимать плечами, но было бы странно, если бы такое мощное социальное явление не имело под собой никаких фундаментальных основ. Есть ли в отказе от прививок рациональное? Большинство заявлений антивакцинаторов не имеют под собой никаких оснований, но причины поступков человека часто не совпадают с тем, что он декларирует. В этой статье я немножко поиграю с математической моделью конфликта и покажу, почему антивакцинаторство необоримо. Если вы заинтересовались, прошу к тексту.

Не будет преувеличением сказать, что движение против вакцинации зародилось практически сразу после изобретения Эдвардом Энтони Дженнером первой вакцины от оспы (первый эксперимент на человеке — 1796 год). За двести с лишним лет технология вакцинации доказала свою работоспособность и, более того, отметилась немалыми достижениями, в частности, победой над оспой, корью, полиомиелитом и другими болезнями. Однако, несмотря на эти неоспоримые достижения, на вакцины люди поглядывают с опаской. Может ли математическое описание задачи помочь нам разобраться с этим казусом?

Предлагаемая в статье матмодель довольно примитивна и сильно упрощена. Она игнорирует территориальную и временную динамику, но зато демонстрирует качественный феномен — зачем и откуда взялись люди, которые вакцинироваться не хотят. Надо сразу оговориться, что графики, приведённые ниже, если не сказано обратного, построены на основе величин «взятых с потолка» с единственной целью продемонстрировать качественные эффекты. Это сделано с умыслом: на взятых по реальным болезням данных изучаемые в статье эффекты оказываются исчезающе малыми и совершенно не наглядны. Тем не менее, существуют причины, делающие понимание этих эффектов важным. Эти причины мы обсудим сразу же после анализа матмодели.

Качели сомнений

Постановка задачи. Пусть на планете Шелезяка существует популяция роботов, которой угрожает компьютерный вирус. Инженеры Шелезяки изобрели программный патч. Патч замедляет распространение вируса, проникшего через файрвол робота, помогает антивирусному софту робота лучше опознавать и уничтожать вредоносный код, снижает шанс передачи вируса роботу-соседу. Существует вероятность, что из-за особенностей индивидуального программного или аппаратного обеспечения патч может работать не совсем корректно и вызывать некоторые нежелательные явления, но не защищённые патчем и поражённые вирусом роботы имеют существенные проблемы, вплоть до возможности перемещения в сторону свалки под печальную музыку. Известно также, что чем больше заражённых вокруг робота, тем выше шанс заразиться самому, причём, если пропатчатся все роботы, шанс заразиться станет исчезающе мал. Каждый робот должен принять решение — ставить ему программный патч, или нет. Спрашивается: Какова оптимальная стратегия робота-игрока в таких условиях?

Рассмотрим способ мышления робота при выборе обществом тривиальных стратегий:

  1. Я не патчусь и никто не патчится. Вирус бушует, многие умерли. Опасно. Буду ставить патч.
  2. Все ставят патч. Вирус уничтожен, эпидемия побеждена, не начавшись. Превосходно. Однако, если я поставлю патч, я могу поиметь неблагоприятные явления, пусть даже вероятность их мала. В то же время риска заразиться нет, так как все поставят патч. Не буду ставить патч.

Эти классические качели означают, что задача не имеет решения в чистых стратегиях. Даже исчезающе малая вероятность получить нежелательные явления при достаточно большой популяции способна привести в движение качели и запустить игру.

Теория игр и камрад Джон Нэш говорят нам, что если решений нет в чистых стратегиях, его надо искать в стратегиях смешанных. Смешанная стратегия предполагает, что игрок действует стохастически и с некоторой вероятностью или ставит патч, или не ставит. Верность этого соображения может быть показана на дифференциальных уравнениях динамической модели системы. Действительно, если роботы принимают решение один за другим и имеют полную информацию о решениях, принятых предыдущими сопланетниками, они могут внимательно смотреть на то, какое количество роботов пропатчилось. Робот будет патчиться, если пропатченных становится мало, и отказываться от патча, если пропатченных становится много. Этот процесс довольно быстро приходит к некоторому устойчивому равновесию, и тогда можно определить шанс встретить пропатченного робота или, что то же самое, долю пропатченных роботов в популяции.

Перечислим действующих лиц этой изумительной театральной постановки:
— Вероятность того, что робот поставит патч (это наш главный герой).
— Вероятность для робота быть заражённым вирусом (а это персонаж-трикстер).

Дальше идут статисты и герои второго плана:
— Вероятность получить нежелательные явления при установке патча.
— Вероятность тяжелого поражения вирусом для заражённого непатченного робота.
— Коэффициент снижения вероятности заражения пропатчившегося робота.
— Вероятность тяжелого поражения вирусом для заражённого пропатченного робота.
— Штраф получаемый роботом, если ему не повезло с патчем.
— Штраф получаемый непатченным роботом, если ему не повезло с вирусом.
— Штраф получаемый патченным роботом, если ему не повезло с вирусом.

Необходимо оговориться, что более сложная модель должна была бы включать в себя влияние патча на разные события, как то — шанс проникновения вируса через файрвол, шанс исполнения проникшего вируса (то есть перехода его в активную форму), шанс получения существенного урона, и, наконец, шанс распространения вируса заражённым роботом. На каждую из этих вероятностей и сопутствующих им штрафов и эффектов патч влияет по-разному, но в нашей примитивной модели мы ограничимся несколькими совокупными характеристиками.

Представим ещё одного важного персонажа нашей драмы. Применяя формулу полной вероятности, распишем риск , получаемый среднестатистическим роботом в зависимости от доли патченных роботов в популяции (напомню, что риском по определению называется произведение штрафа на вероятность его получения).

Здесь мы видим еще двух героев:
— совокупный риск патченного в зависимости от доли пропатчившихся.
— совокупный риск непатченного в зависимости от доли пропатчившихся.

Это те самые риски, которые взвешивает робот, принимая индивидуальное решение. Особо отметим, что робот обязан выбрать один из двух вариантов, то есть пойти или на риск , или на риск . Отказаться играть в игру робот не может.

Разность рисков как функция доли пропатчившихся, это последний по списку, но не по значимости, участник труппы:

Функции и интересны тем, что первая отвечает за чаяния индивидуальные, а вторая за чаяния общественные. Далее мы увидим, разделяет ли общество интересы собственных индивидов, и блюдут ли индивиды интересы общества.

В поисках равновесия

Попробуем прикинуть поведение зависимостей и .

В простой модели, не учитывающей всяческих побочных и социальных явлений, до рассмотрения которых мы дойдём позже, риск побочных явлений выглядит как константа, ибо зависит только от качества патча, но не от доли патченных.

Коэфициенты , , , , также будем считать константами.

Величина — это вероятность робота заразиться с вирусом. Зависимость не слишком физична, ибо зависит от кучи разных факторов помимо доли пропатчившихся. Но некоторые предположения о её виде в рамках модели первого приближения сделать можно. Из условия следует, что функция не возрастает, то есть характеризуется неположительной первой производной . Можно предположить, что она имеет вогнутый вид, то есть вторая производная неотрицательна . Кроме того, дано, что можно свести болезнь в ноль при или даже при некотором (см. популяционный иммунитет).

Чтобы иметь возможность построить какие-нибудь графики, рассмотрим семейство функций , удовлетворяющих заявленным выше характеристикам. Пусть имеет следующий вид:

Код графика

#!/usr/bin/env python3 import matplotlib.pyplot as plt import matplotlib.lines as mlines import numpy def find_minimum(S): minidx = 0 for i in range(len(S)): if S[i] < S[minidx] : minidx = i return minidx p = numpy.linspace(0,1,1000) def vn(v0, n): return v0 * (1-p)**n fig, ax = plt.subplots() ax.set_xlabel('доля патченных p') ax.set_ylabel('вероятность быть атакованным v(p)') ax.plot(p, vn(0.1, 1), p, vn(0.1, 1.5), p, vn(0.1, 2), p, vn(0.1, 3)) ax.grid() ax.legend(["0.1(1-p)", "0.1(1-p)^1.5", "0.1(1-p)^2", "0.1(1-p)^3"]) plt.show()

Подобрав некоторые константы матмодели , , , , , , для получения красивой картинки, посмотрим на графики функций , , .

Код графика

#!/usr/bin/env python3 import matplotlib.pyplot as plt import matplotlib.lines as mlines import numpy def find_minimum(S): minidx = 0 for i in range(len(S)): if S[i] < S[minidx] : minidx = i return minidx p = numpy.linspace(0,1,1000) def v(p): return 0.3 * (1-p)**1.5 def x(p): return 0.08 + 0.1 * v(p) def y(p): return 1 * v(p) def S(p): return p*x(p) + (1-p)*y(p) S_minidx = find_minimum(S(p)) fig, ax = plt.subplots() ax.set_xlabel('доля патченных p') ax.plot(p, x(p), p, y(p), p, S(p)) ax.scatter([p[S_minidx]],[S(p)[S_minidx]],color="darkgreen",marker="D") ax.grid() ax.legend(handles=[ mlines.Line2D([], [], color='blue', label='x(p)=0.08 + 0.03(1-p)^1.5'), mlines.Line2D([], [], color='orange', label='y(p)=0.3(1-p)^1.5'), mlines.Line2D([], [], color='green', label='S(p)=p*x(p) + (p-1)*y(p)'), mlines.Line2D([], [], color='darkgreen', marker='D', linestyle='None', markersize=10, label='S_minimum') ]) plt.show()

На графике сразу бросаются в глаза две точки — точка пересечения кривых и точка минимума , отмеченная зелёным ромбом. Точка соответствует такой замечательной стратегии при которой среднестатистический робот получает наименьший риск и наибольшее благоденствие. Это лучшая стратегия, которую мог бы выдумать для группы коллективный разум. Интересно отметить, что наибольшее благоденствие достигается отнюдь не при ста процентах пропатченных. Если сделать допущение, что стремится к нулю, несложно произвести аналитический расчёт экстремума функции для выбранной к рассмотрению семейства функций из условия :

Если подкоренное выражение меньше единицы, функция имеет экстремум в области определения . Поиграться с конкретными значениями и зависимостями можно с помощью кода, который приложен к графику. При аналитический расчёт существенно усложняется, поэтому оставим его за скобками изложения.

Но, самое интересное в приведённом графике не то, что минимум среднестатистического риска достигается отнюдь не при ста процентах пропатченных, а то, что положение группового оптимума не является равновесным. Действительно. Обратим внимание, что . Из этого следует . Это значит, что если роботы выбирают установку патча с вероятностью , роботу-индивидуалисту выгоднее будет отказаться от установки патча. "Да, отлично, мы достигли оптимального количества патченных, но мои риски будут меньше, если я откажусь от установки патча, я же умный". А поскольку умных много, совокупная доля пропатчившихся тут же начинает падать, и продолжается это падение до того момента, пока не сравняется с , то есть система съезжает в точку схождения кривых, где качели уравновешиваются.

Странный эффект бесполезного патча

Прежде чем продолжить движение по рельсам анализа, хочется рассмотреть один интересный неинтуитивный эффект. Сравним графики при изменении параметра при его стремлении от к . В ситуации, когда , патч полностью защищает робота от заражения. Если , патч не помогает роботу легче переносить болезнь и вообще никак не улучшает его жизнь в случае, если робот заразится. Думаете, при патч бесполезен и роботы откажутся его использовать? Ну, почти:

Сравним первый () и второй () графики. По мере увеличения параметра точка схождения кривых, характеризующая положение качельного равновесия, действительно смещается влево — всё большее количество роботов отказываются от патча, но обратите внимание, что групповой оптимум, напротив, смещается вправо!

Эмм… Кажется с нашей матмоделью что-то не так. Почему бесполезный для индивида патч стал более полезным для группы? Фокус тут в том, что патч не бесполезен. Да, он меньше помогает заражённому, но вероятность установки патча по-прежнему участвует в зависимости . Чем больше , тем меньше заражённых, то есть патч препятствует распространению болезни. Его установка всей популяцией является единственным способом минимизировать потери группы, но чем меньше индивидуального профита даёт патч, тем меньше роботы склонны к его установке. Апофеоз достигается на третьем графике при , то есть тогда, когда патч не помогает индивиду переносить болезнь. Мало того, индивид еще и платит за его установку риском ! На всей области определения — роботы массово отказываются от обновления ПО, но взгляните на групповой оптимум. Следуя за сиюминутной индивидуальной выгодой, роботы существенно ухудшают своё положение относительно того взвешенного решения, которое мог бы им предложить коллективный разум.

Альтруизм эгоистов

На графиках мы видим, как благо индивидуальное вступает в конфликт с благом общественным. Наиболее хорошее для индивида состояние дел достигается в ситуации, когда все вокруг него пропатчились, а он сам — нет. Желание улучшить своё положение приводит к тому, что состояние, выгодное для группы в целом, оказывается неустойчивым. Действительно ли люди склонны вести себя так, чтобы игнорировать общественное ради индивидуального — вопрос, что называется, философский. Как минимум, социальный робот понимает, что его точность в оценке рисков не высока. Вместе с этим он понимает, хотя бы интуитивно, что голосовать в левую сторону от положения качельного равновесия нет никакого смысла, а голосование в правую сторону может дать некоторые плюшки в случае, если среднестатистический робот также будет голосовать со смещением в правую сторону от положения качельного равновесия. Так создаётся перекос в сторону группового оптимума. Да, наши роботы эгоисты-перестраховщики, а вовсе не альтруисты, но если пользоваться привычным языком, можно сказать, что существует обусловленный альтруизмом риск, на который робот готов пойти для того, чтобы сместить равновесие в сторону оптимума. Можно обнаружить и другие альтруистические эффекты, но тут интересно то, что равновесие по полной информации будет лежать не совсем в точке качельного равновесия, а где-то между качельным равновесием и групповым оптимумом. Где конкретно — нам не ведомо, учитывая, что конкретных, выраженных в числах, законов, описывающих этот и другие альтруистичные эффекты, у нас всё равно нет.

О числах конкретных замолвим ли слово? Возвращение на Землю

Увы, роботы не знают реальный вид зависимости и не могут точно определить , но зато наличие статистики помогает прикинуть соотношение рисков и , где соответствует доле патченных на текущий момент. Как определить, находится ли текущая ситуация в точке равновесия или в точке оптимума? Если , мы должны иметь ненулевой градиент .

Определение этой характеристики требует понимания вида зависимостей и , а потому осложнено. А вот с качельным равновесием проще.

Нахождение в точке качельного равновесия вычисляется из условия:

Проанализируем "физический смысл" левой части последнего выражения. Первое слагаемое характеризует отличие того насколько хорошо патченный и непатченный роботы переносят вредоноса, помноженные на вероятность получить этого самого вредоноса, а второе слагаемое характеризует риск получить нежелательные явления при установке патча.

Возвращаясь с Шелезяки на Землю и, вооружившись матмоделью, очень хочется как-то уложить в неё имеющуюся в инфопространстве статистику. Дело это не то чтобы сильно благодарное. Нужно расчитать вероятности и определить штрафы, то есть подсчитать риски. Это легко сказать, "посчитать риск", но как сравнить штраф выраженный в виде головной боли со штрафом в виде летального исхода? Впрочем, большой точности от нас никто не потребует, а качественную оценку попробуем получить, отталкиваясь от понятной и выраженной в числах категории смертности.

Пусть .
О модели заразности у нас данных особо нет, хотя теоретически можно посмотреть долю новых случаев в популяции для разных стран и построить зависимость от количества вакцинированных. Но, поскольку автор статьи очень ленив, примем нашу модельную зависимость .

— оценим как вероятность заразиться коронавирусом по официальным данным (Я взял приблизительную статистику по России на момент написания статьи: ссылка):
— шанс смерти заражённого по тем же данным
— шанс смерти вакцинированного от вируса. Если, например, оттолкнуться от результатов третьей фазы испытаний вакцины Спутник V (ссылка), можно почерпнуть, что из группы добровольцев, состоящей из 14 964 человек, которые получили укол настоящей вакцины, в итоге заболели 16 человек, или 0,1% тех, кому ввели препарат. В группе плацебо, в которую вошли 4902 человека, заболели 62 человека — 1,3% тех, кому ввели физраствор. Если даже забыть, что вакцинированные болеют легче, получается не менее чем в 13 раз меньше . , .
— С всё ещё интереснее, ибо, хотя данные по каким-то серьёзным последствиям вакцинации есть, проверка подавляющего большинства сообщений показывает отсутствие реальной причинно-следственной связи. Что до подтверждённых случаев даже не смертей, но тяжелых реакций, их количество оценивают примерно как один на миллион. . Вот, например, со слов РИА новостей (Ссылка) количество тяжелых реакций в Буэнос-Айросе при эксплуатации вакцин "Спутник V", "Sinopharm" и "Covishield/AstraZeneca" составило 0,7, 0,8 и 3,2 на миллион соответственно.

Но оценивать последствия только по летальным случаям и тяжелым реакциям всё же неправильно. Как же головная боль, нарушение сна, повышенная температура которые настигают после вакцинации почти всех. Давайте не будем останавливаться только на оценке , но посмотрим также , , то есть увеличим эту оценку в 100 раз. Вот результаты.

Ну, ок. Подняли в сто раз — получили какое-то смещение. И даже так оптимум и точка группового равновесия сильно смещены вправо от той доли вакцинированных, какую мы имеем сегодня. Разность вопиюще большая!

Получается, система находится сильно левее не то что группового оптимума, но даже положения качельного равновесия. Стремится к этому самому равновесию система, как кажется, даже не собирается. Что происходит? В каком месте математическая модель даёт сбой?

Почему теория игр не работает? Иррациональность рациональность

Вопрос, который надо задать при применении любой математической модели к объектам реального мира — "а действительно ли объекты ведут себя так, как предсказывает теория и почему нет?". В мире Шелезяки информация дана в виде размазанной статистики, искажённой интерпретаторами и собственным восприятием робота. Робот строит оценку рисков не на основе реальных данных, но на основе реконструкции реальных данных по анализу данных имеющихся и строит не то чтобы сильно качественно. В ситуации, когда взвешиваются две величины, причём одна сильно больше другой, робот склонен переоценивать значимость меньшей. Если робот сравнивает вес шайбы М8 и токарно-карусельного станка, он понимает, что станок должен быть тяжелее шайбочки, но степень этого тяжелее представляется роботу довольно туманной. Кажется, что раз мы взвешиваем два риска (а мы их взвешиваем, ведь игра не просто началась, но активно происходит прямо здесь и сейчас), между ними хочется найти хоть какую-то сопоставимость. При принятии решения, робот, подтягивает значимость рисков друг к другу. Он склонен недооценивать вред вируса, и переоценивать вред патча. (UPD: В комментарии https://habr.com/ru/post/565570/#comment_23220514 к настоящей статье камрад s_a_p даёт ссылку на работу Даниэля Канемана, в которой подробно разбирается этот феномен).

Кроме того, помимо оценки рисков самих патча и вируса, в реальном расчёте должны быть учтены и такие странные факторы как социальные риски (R7-D8 будет меня уважать, если я поставлю патч, а HK-553, если узнает, подбросит мне загуститель в машинное масло), неудобства связанные с процессом постановки патча (пункт техобслуживания в соседнем городе, пока доеду — развалюсь) и даже преимущества от получения листа технической неисправности (заражусь и можно будет не ехать на нелюбимую работу, а вместо этого заценить третью серию сериала о кожаных мешках, посягающих на независимость Шелезяки). Кажется, что социальные факторы в этой задаче избыточны, но на практике значимость их не просто сопоставима, но может в разы превышать значимость основных эффектов игры, и в обществе победившего мракобесия биологически-технический профит патча может оказаться менее значимым, чем риск общественного порицания!

Поскольку наша модель примитивна, аки дихотомия добра и зла, все роботы имеют один и тот же набор имеющихся данных и сопутствующих факторов, и выполняют одну и ту же реконструкцию. В результате этой работы они строят равновесную стратегию. Назовём равновесие достигаемое такой стратегией — "равновесием по реконструированным данным и сопутствующим факторам" в противовес "равновесию по полной информации", полученному нами ранее.

Дополнительные слагаемые учитывают ошибки прямых оценок рисков , и риски сопутствующих обстоятельств , .

Интересно так же заметить, что общественное мнение по вопросу, "а каким должно быть ?" не так чтобы скореллировано с самим : "Надо роботов патчить? Надо. Будешь патчиться? Чего, я дурак, что ли?". Противоречащие личная и общественная установки прекрасно уживаются в одном кремниевом вычислителе (вспоминаем дихотомию группового оптимума и качельного равновесия).

Конкретный вид зависимостей для нашего сугубо качественного анализа большой роли не играет, а интересует нас только то, что роботы реальной картины не ведают, склонны к переоценке малых рисков, а при принятии решений принимают во внимание кучу всякой бесполезной фигни дополнительную важную социальную информацию. На основе этих данных роботы строят равновесную стратегию, которая смещена как относительно группового оптимума, так и относительно качельного равновесия по полной информации. Баланс этой стратегии может быть существенно смещён. Если вред вируса недооценивается, а вред патча преувеличивается, в системе происходит что-то такое:

Реальная игра ведётся не в реальном, но в воображаемом пространстве, в имаджинариуме самих игроков. Важно понимать, что стратегия о которой сейчас идёт речь — это равновесная стратегия, пусть она и оторвана от положения дел в реальном мире. Никаких оперативных механизмов обратной связи, способных сместить баланс к более физичному состоянию, в системе не наблюдается. При этом, несмотря на наличие дополнительных слагаемых, вид "искажённых" уравнений и графиков мало чем отличается от вида уравнений, которые мы получали ранее при анализе системы с полной информацией. Родственность искажённой и неискажённой систем тонко намекает нам на то, что искажённая система в целом живёт по тем же законам, что и неискажённая. Именно это соображение заставляет внимательно относиться к изученным выше эффектам, несмотря на то, что для истинной системы влияние их исчезающе незаметно.

Темпоральные стратегии

Было бы неправильно обойти вниманием интересную, обсуждаемую в последнее время стратегию, выходящую за рамки нашего анализа. Или, вернее две довольно рациональные стратегии.

  1. "Из разных источников поступает противоречивая информация. Патч то ли работает, то ли нет. Ничего не понятно, рационально будет подождать."
  2. "Я хочу патч, но не верю нашим инженерам. Подожду, пока не появится альтернативный патч от разработчиков с Кибертрона".

Обе стратегии выходят за рамки примитивной модели, потому что апеллируют к идее ожидания, то есть к понятию времени, не учтённому в вероятностной модели. Можно ввести эти стратегии в модель чисто декоративно. "Поставлю патч, но позже" опишем как некоторую вероятность для игрока быть поражённым в момент бездействия. Такая вероятность есть функция от доли патченных и времени бездействия . Стратегию альтернативного патча можно описать как разные риски, символизирующие патчи от разных инженеров, и разные вероятности их получения. Отметим, что нет никаких гарантий, что патч А существенно лучше патча Б, но, если бы нам были бы известны оценки всех рисков, мы бы пожалуй могли бы посчитать, сколько времени имеет смысл ждать, чтобы профит от возможности поставить более качественный патч превзошёл риск от ожидания альтернативного варианта. Оставим задачу вывода этой зависимости в качестве упражнения для тех, кому нечем заняться вечером.

Не забудьте учесть, что правильный расчёт подразумевает учёт как рисков побочных явлений , так и профит в деле борьбы с болезнью , причём второе слагаемое для реальных препаратов окажется в разы существенней первого и именно его в первую очередь надо принимать во внимание. Бывает и такое, что анализируют препарат только с точки зрения риска нежелательных явлений. Видимо, предполагается, что самой лучшей прививкой является физраствор.

Советы. Вредные и не очень

Исходя из всего вышеперечисленного: если вы фанатично за вакцинирование и хотите вакцинировать всех и вся, помните:

  1. Завышайте оценку вреда ненавистного вам вируса и шанса заразиться, утверждайте, что вакцина безвредна и даёт стопроцентную защиту.
  2. Никогда! Ни при каких обстоятельствах не упоминайте о популяционном иммунитете. Говорите, что вирус появляется из воздуха, а теория витализма верна.
  3. Устраивайте праздненства и не пускайте на них антиваксеров. Пусть завидуют.
  4. Поставьте пункты вакцинации на каждом углу. Пусть люди спотыкаются об них.
  5. Активно боритесь с преследованиями и порицаниями вакцинированных. Преследуйте идейных противников.

Если вы избранный Нургла и хотите, чтобы зараза распространялась, а никакая вакцинация на пути не стояла, помните:

  1. Завышайте оценку шанса поиметь проблемы с вакцины и оценку её вредности, занижайте оценку вреда вашего любимого вируса и шанса им заразиться.
  2. Поддерживайте морально соратников, активно порицайте слабохарактерных, преследуйте инакомыслящих.
  3. Вещайте на каждом углу, что при достижении популяционного иммунитета, тем умным, кто так и не укололся, уже можно будет не колоться, а глупые пусть ходят уколотые.
  4. Затягивайте процесс принятия решения, давайте людям противоречивые данные. Пусть запутаются.
  5. Требуйте, чтобы вам привезли из Кибертрона патч тамошнего разлива, ведь он лучше изделия ваших инженеров на целых полпроцента!
  6. Активно рекомендуйте безопасные, но бесполезные препараты. Прекрасно известно, что нет ничего полезнее плацебо.

Советы. Полезные и не слишком

Поскольку программа взвешивания рисков активируется самим фактом наличия игры, отказаться от оценки рисков мы не можем никаким образом. Хорошая новость в том, что на текущем этапе конфликт вакцинаторов и антивакцинаторов — это не конфликт общественного и личного. Истинное равновесие по полной информации и групповой оптимум — оба находятся по одну сторону от текущего состояния дел. На тёмной стороне играют ошибки интерпретации информации, склонность переоценивать малые риски, сопутствующие социально-бытовые факторы, в также самая лучшая стратегия всех времён и народов — "авось пронесёт".

Текущее положение равновесия сильно смещено в левую сторону и требует коррекции. В систему можно вмешаться, корректируя картину мира людей в деле оценки рисков и влияя на сопутствующие социально-бытовые факторы. Коррекцией также может быть общественный договор, то есть система штрафов и плюшек смещающих равновесие к оптимуму. Интересно, что в идеальной системе попытка удержать количество вакцинированных выше положения качельного равновесия по полной информации требует общественного договора, ибо никаких других вариантов не существует.

Значит ли выше изложенное, что перед принятием решения следует рассчитать риски и бросить кубик? Нет, конечно нет. Генератор случайных чисел — это про моделирование действий толпы рациональных индивидов, а индивид должен быть рационален детерминировано. Если гипотеза о смещении равновесия в отрицательную сторону верна (а она верна), то для среднестатистического игрока выгодной стратегией будет голосовать в сторону смещения текущего равновесия к равновесию по полной информации. Далее, после перехода через точку равновесия, выгодно голосовать в сторону оптимума в случае, если вы доверяете обществу и невыгодно, если вы обществу не доверяете.

Выводы

Антибиотики или уколы витамина B12 почему-то не вызывают таких жарких споров и противоречий, как прививки. В последнее время одним из частых аргументов людей, считающих своим просветительским долгом помощь тёмным сопланетникам (спасибо всем причастным за просветительскую кампанию), становится аналогия с "переходом небезопасного моста":

«Инженер и антипрививочник подходят к мосту через реку, кишащую крокодилами и пираньями.
Антипрививочник спрашивает у инженера:
— Безопасно ли проходить по этому мосту?
Инженер отвечает:
— Проходить по этому мосту безопасно на 99,97%.
— Хм. Тогда я лучше вплавь
».

Ну или шапкой, не гарантирующей 100% защиты от мороза, ремнями безопасности, бронежилетами.

У всех этих аналогий есть одна малюсенькая проблема. Они игнорируют игровую природу вакса-антивакского конфликта. В этих примерах есть оценка шансов, но нет игры с обществом — в любой ситуации понятно, что мост выгоднее реки с крокодилами, что в шапке теплее, что ремень безопасности и бронежилет однажды спасут вашу жизнь. В этих играх нет возможности для индивида обыграть общество. Отказ от бронежилета не может вам помочь, если все ваши сокомандники будут в бронежилетах. Отказ от ремня безопасности не увеличит ваши шансы, если все водители на трассе поедут пристёгнутыми. Отказ же от прививки может увеличить ваши шансы если… И в этот момент начинается игра.

В действительности я не знаю, на самом ли деле это соображение существенно. Возможно, психологическая подоплёка здесь совсем иная, но статья посвящена не столько причинам, сколько матмодели конфликта. В этой заметке я хотел показать, как из простого уравнения можно вывести некоторые интересные, местами неочевидные, а местами, напротив, самоочевидные эффекты, а именно:

  1. Отказаться от игры не получится.
  2. Теория игр предсказывает, что антивакцинаторство неискоренимо.
  3. Люди, принимая решение на основании искажённой информации, строят неоптимальное равновесие.
  4. Люди склонны существенно переоценивать значимость малых величин.
  5. Общественное мнение и прочие сопутствующие факторы смещают равновесие.
  6. Информирование населения снижает ошибки оценки и возвращает систему к равновесию по полной информации.
  7. Риск нежелательных явлений и вредность вируса смещают положение группового оптимума.
  8. Групповой оптимум находится не на отметке в 100%.
  9. Общественный договор работает.
  10. Поддержание процента вакцинированных выше уровня популяционного иммунитета недостижимо без общественного договора.

Напоследок необходимо отметить следующее. Мир сложнее, чем математическая модель. Эффекты, предсказанные для случая действия закона больших чисел могут не подходить для построения стратегии конкретного индивида. Если ситуация выходит за рамки области действия матмодели, матмодель должна быть без сожалений отброшена, но часто оказывается, что довольно сложные явления описываются простейшими зависимостями, анализ которых может помочь в принятии решения, вынимая вопрос из абстрактного неухватываемого воздуха и ставя его на понятные приземлённые ноги.

  • антивакцинаторство
  • антивакцинаторы
  • прививки
  • математические этюды

Оборудование

Оборудование — системы, агрегаты и узлы, позволяющие улучшить характеристики танка. Может быть штатное или специальное. Установка специального оборудования невозможна, если на машину уже установлено штатное оборудование с аналогичным эффектом и наоборот.

Штатное и трофейное оборудование демонтируется за игровую валюту 10 , либо демонтажным набором. Усовершенствованное за 200 .

Штатное оборудование

Штатное оборудование разделено на специальные категории и может быть установлено в любые доступные слоты. Штатное оборудование не может быть свободно снято с машины с целью повторного использования. Демонтировать сложное оборудование можно только за 10 либо демонтажным набором или просто его разрушить. Следует заранее продумать какое сложное оборудование устанавливать, чтобы не потерять лишние кредиты или не тратить золото при демонтаже.

Огневая мощь

Улучшенная вентиляция

Досылатель

Усиленные приводы наводки

Стабилизатор вертикальной наводки

Улучшенный прицел

Улучшенные механизмы поворота

+10% / +12,5% к скорости поворота машины
-10% / -12,5% от разброса при движении и поворотах машины, а также при повороте башни и после выстрела
Стоимость: 200 000 / 600 000
Масса: 100 кг
Примечание: Увеличивает скорость поворота корпуса и башни для машин с башней или скорость перевода орудия для машин с неподвижной рубкой. Уменьшает разброс орудия при движении и поворотах корпуса и башни машины. Работает эффективнее с умением «Виртуоз».

Живучесть

Улучшенная вентиляция

Изменённая компоновка

Эффект: Предотвращает взрыв боеукладки, возгорание баков и выведение двигатель из строя.
Стоимость: 200 000 / 600 000
Масса: 50 кг
Примечание: Ускоряет ремонт. Увеличивает прочность боеукладки, баков и двигателя. Уменьшает штраф к скорости заряжания и потерю мощности при повреждении соответствующих модулей. Уменьшает шанс возгорания двигателя. Также один раз за бой предотвращает взрыв боеукладки, возгорание баков и выведение двигателя из строя, если они потеряли все очки прочности. Работает эффективнее с навыками «Ремонт», «Бесконтактная боеукладка», «Чистота и порядок».

Противоосколочный подбой

+50% / +60% к защите экипажа от ранений;
-10% / -15% от времени оглушения;
-20% / -25% от времени дополнительного оглушения.
Стоимость: 50 000 / 200 000 / 500 000 / 750 000
Масса: 250 / 500 / 1000 / 1500 кг
Примечание: Абсорбция — поглощение; проще говоря, подбой уменьшает урон от столкновений с другой техникой и от попаданий по машине осколочно-фугасных снарядов. Подбой пригодится на тяжёлых танках ближнего боя с крепкой бронёй и мощным таранным потенциалом.

Улучшенная закалка

+50% / +65% к прочности ходовой;
+15% / +20% к скорости ремонта ходовой;
+10% / +10% к грузоподъёмности ходовой;
-50% / -65% от урона, передаваемому корпусу через ходовую при падении.
Эффект: Полностью восстанавливает прочность ходовой после ремонта.
Стоимость: 40 000 / 200 000 / 600 000
Масса: 200 кг
Примечание: Увеличивает прочность машины, грузоподъёмность, скорость ремонта ходовой, а также уменьшает получаемый корпусом урон от падения (в случае падения на ходовую). Также позволяет полностью восстановить прочность ходовой после ремонта. Снижает шанс «потери» гусеницы при получении ей урона и позволяет дольше оставаться на ходу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *