Персептрон розенблатта что это
Перейти к содержимому

Персептрон розенблатта что это

Перцептрон — дальний предок ChatGPT

Нейросети – это компьютерные системы, которые пытаются имитировать работу человеческого мозга. Они состоят из множества соединенных между собой нейронов, которые способны обрабатывать информацию и принимать решения на основе полученных данных. История развития нейросетей началась еще в 1943 году, когда Уоррен Маккаллок и Уолтер Питтс опубликовали статью «Логический калькулятор, использующий нервную систему», в которой они описывали модель искусственного нейрона.

В 1950-х годах Фрэнк Розенблатт разработал первую нейронную сеть, названную «Перцептрон». Перцептрон – это одна из первых разработок в области нейронных сетей. Она представляет собой алгоритм, который пытается имитировать работу нейронов в человеческом мозге. Основным принципом работы “Перцептрона” является обработка входных данных и принятие решений на основе полученной информации.

Перцептрон состоит из одного слоя нейронов, каждый из которых имеет несколько входов и один выход. Входные данные подаются на каждый из нейронов, где они умножаются на соответствующие им веса. Затем, полученные произведения суммируются и подаются на функцию активации, которая преобразует их в выходной сигнал.

Функция активации может быть различной, но чаще всего используется пороговая функция, которая возвращает 1, если сумма произведений превышает определенный порог, и 0 в противном случае. Таким образом, перцептрон может принимать решения на основе полученной информации.

Обучение перцептрона происходит путем корректировки весов входных данных. Если перцептрон допускает ошибку в принятии решения, то веса корректируются таким образом, чтобы ошибка была уменьшена. Этот процесс повторяется до тех пор, пока перцептрон не станет способен правильно принимать решения на основе входных данных.

Как это работает?

Предположим, мы хотим обучить перцептрон распознавать квадраты и круги. Наш подход будет следующим:

1. Собираем набор изображений квадратов и кругов.

2. Передаем перцептрону одно изображение за раз. Он анализирует его и определяет, к какой категории оно относится — к квадрату или кругу.

3. Если ответ верный, мы ничего не меняем. Если ответ неверный, мы корректируем правила внутри перцептрона, чтобы он не допустил ошибку в следующий раз.

4. Повторяем процесс для всех изображений до тех пор, пока перцептрон не будет работать без ошибок.

5. Затем мы тестируем перцептрон на других изображениях квадратов и кругов.

Однако, перцептрон имеет свои ограничения. Он не может решать задачи, которые не могут быть разделены линейной гиперплоскостью. Это привело к затуханию интереса к нейронным сетям на несколько десятилетий, пока в 2020-х нейросети вновь не приковали к себе внимание общественности. Хотите узнать больше о нейросетях — подписывайтесь на наш телеграм-канал.

Многослойный перцептрон Розенблатта

Многослойный перцептрон Розенблатта — перцептрон с дополнительными слоями А — элементов, расположенными между S и R элементами. Определение Розенблатта отличается от многослойного перцептрона Румельхарта, и является более общим случаем по отношению к нему. Так как элементарный перцептрон уже обладал двумя слоями связей и тремя слоями элементов (нейронов), то такой перцептрон не считался многослойным, и многослойность подразумевалась только при наличии минимум четырех слоев элементов. Другое важное отличие состояло в том, что у Розенблатта не обязательно все связи были обучаемые, часть из них могла быть случайно выбрана и фиксирована. Румельхард же предполагал, что все связи многослойного перцептрона обучаемы. Поэтому полным эквивалентом многослойного перцептрона Румельхарта, у Розенблатта является перцептрон с переменными S-A связями.

Метод обратного распространения ошибок не подходит к обучению перцептронов, так как пороговый элемент перцептрона не гладкий (не дифференцируется). Кроме того, метод обратного распространения ошибок имеет экспоненциальную вычислительную сложность по отношению к числу входов нейронной сети, числу связей в слое и числу слоев в нейронной сети. Очень быстро обучение зацикливается само на себя и этот алгоритм начинает работать минимизируя многомерную поверхность собственных ошибок.

Двухслойные перцептроны следует обучать алгоритмом по ГОСТ Р 52633.5-2011 «Защита информации. Техника защиты информации. Автоматическое обучение нейросетевых преобразователей биометрия-код доступа». Это первый алгоритм, который очень устойчив и практически не накапливает собственные ошибки. Важно так же то, что он имеет линейную вычислительную сложность, что позволяет обучать нейронные сети с большим числом входов и выходов, а также с любым числом слов нейронов в сети. Как недостаток алгоритма, следует рассматривать то, что он построен на искусственном ухудшении нейросетевых решений. Так каждый обученный нейрон по этому алгоритму должен хорошо узнавать «Своего» и очень плохо узнавать «Чужого». ГОСТ Р 52633.5-2011 требует, чтобы вероятность ошибок второго рода (ошибочное признание «Чужого» за «Своего») составляла ровно 0.5 на выходе каждого нейрона. Это требование информационной безопасности, продиктованное защитой от атаки поиска биометрических «близнецов». Получается, что каждый нейрон работает очень плохо, а все вместе нейроны «Чужой» обмануть не может. Для «Чужих» примерно половина нейронов дает неверный код, для «Своего» практически все нейроны дают верное состояние заданного при обучении кода.

Недостатки алгоритма ГОСТ Р 52633.5-2011 компенсируют выбором большого числа входов и выходов нейросети. Так при обработке 416 коэффициентов двухмерного преобразования Фурье двухслойной нейронной сетью с 256 нейронами в каждом слое, вероятность ошибок второго рода удается снизить примерно в миллиард раз по сравнению другими нейросетевыми решениями анализа рукописного почерка.

См. также

  • Перцептроны с перекрестными связями
  • Перцептроны с обратной связью

Литература

  • Розенблатт, Ф.Принципы нейродинамики: Перцептроны и теория механизмов мозга = Principles of Neurodynamic: Perceptrons and the Theory of Brain Mechanisms. — М .: Мир, 1965. — 480 с.
  • Перцептрон

Wikimedia Foundation . 2010 .

  • Многопролётная балка
  • Многослойный перцептрон Румельхарта

Полезное

Смотреть что такое «Многослойный перцептрон Розенблатта» в других словарях:

  • Многослойный перцептрон — Розенблатта перцептрон с дополнительными слоями А элементов, расположенными между S и R элементами. Многослойный перцептрон Румельхарта частный случай перцептрона Розенблатта, в котором один алгоритм обратного распространения ошибки… … Википедия
  • Многослойный перцептрон Румельхарта — У этого термина существуют и другие значения, см. Многослойный перцептрон. Архитектура многослойного перцептрона Многослойный перцептрон частный случай перцептрона Розенблатта, в котором один алгоритм обратного распространения … Википедия
  • Перцептрон — Логическая схема перцептрона с тремя выходами Перцептрон, или персептрон[nb 1] (англ. perceptron от … Википедия
  • Персептрон — Логическая схема перцептрона с тремя выходами Перцептрон, или персептрон[nb 1] (англ. perceptron от лат. perceptio восприятие; нем. perzeptron) математическая и компьютерная модель восприятия информации мозгом (кибернетическая модель мозга),… … Википедия
  • Возможности и ограничения перцептронов — Логическая схема перцептрона с тремя выходами Основная статья: Перцептрон Перцептрон является одной из первых моделей искусстве … Википедия
  • Искусственная нейронная сеть — У этого термина существуют и другие значения, см. Нейронная сеть (значения). Схема простой нейросети. Зелёным цветом обозначены входные нейроны, голубым скрытые нейроны, жёлтым выходной нейрон … Википедия
  • Искусственная нейросеть — Запрос «Нейронная сеть» перенаправляется сюда. Cм. также другие значения. Схема простой нейросети. Зелёным обозначены входные элементы, жёлтым выходной элемент Искусственные нейронные сети (ИНС) математические модели, а также их программные или… … Википедия
  • Нейронные сети — Запрос «Нейронная сеть» перенаправляется сюда. Cм. также другие значения. Схема простой нейросети. Зелёным обозначены входные элементы, жёлтым выходной элемент Искусственные нейронные сети (ИНС) математические модели, а также их программные или… … Википедия
  • Нейросети — Запрос «Нейронная сеть» перенаправляется сюда. Cм. также другие значения. Схема простой нейросети. Зелёным обозначены входные элементы, жёлтым выходной элемент Искусственные нейронные сети (ИНС) математические модели, а также их программные или… … Википедия
  • Нейросеть — Запрос «Нейронная сеть» перенаправляется сюда. Cм. также другие значения. Схема простой нейросети. Зелёным обозначены входные элементы, жёлтым выходной элемент Искусственные нейронные сети (ИНС) математические модели, а также их программные или… … Википедия
  • Обратная связь: Техподдержка, Реклама на сайте
  • �� Путешествия

Экспорт словарей на сайты, сделанные на PHP,
WordPress, MODx.

  • Пометить текст и поделитьсяИскать в этом же словареИскать синонимы
  • Искать во всех словарях
  • Искать в переводах
  • Искать в ИнтернетеИскать в этой же категории

Нейронные сети, перцептрон

Искусственная нейронная сеть (ИНС) (англ. Artificial neural network (ANN)) — упрощенная модель биологической нейронной сети, представляющая собой совокупность искусственных нейронов, взаимодействующих между собой.

Основные принципы работы нейронных сетей были описаны еще в 1943 году Уорреном Мак-Каллоком и Уолтером Питтсом [1] . В 1957 году нейрофизиолог Фрэнк Розенблатт разработал первую нейронную сеть [2] , а в 2010 году большие объемы данных для обучения открыли возможность использовать нейронные сети для машинного обучения.

На данный момент нейронные сети используются в многочисленных областях машинного обучения и решают проблемы различной сложности.

Структура нейронной сети

Рисунок 2. Схема искусственного нейрона

Хорошим примером биологической нейронной сети является человеческий мозг. Наш мозг — сложнейшая биологическая нейронная сеть, которая принимает информацию от органов чувств и каким-то образом ее обрабатывает (узнавание лиц, возникновение ощущений и т.д.). Мозг же, в свою очередь, состоит из нейронов, взаимодействующих между собой.

Для построения искусственной нейронной сети будем использовать ту же структуру. Как и биологическая нейронная сеть, искусственная состоит из нейронов, взаимодействующих между собой, однако представляет собой упрощенную модель. Так, например, искусственный нейрон, из которых состоит ИНС, имеет намного более простую структуру: у него есть несколько входов, на которых он принимает различные сигналы, преобразует их и передает другим нейронам. Другими словами, искусственный нейрон — это такая функция [math]\mathbb^n \rightarrow \mathbb[/math] , которая преобразует несколько входных параметров в один выходной.

Как видно на рисунке справа, у нейрона есть [math]n[/math] входов [math]x_i[/math] , у каждого из которого есть вес [math]w_i[/math] , на который умножается сигнал, проходящий по связи. После этого взвешенные сигналы [math]x_i \cdot w_i[/math] направляются в сумматор, который аггрегирует все сигналы во взвешенную сумму. Эту сумму также называют [math]net[/math] . Таким образом, [math]net = \sum_^ w_i \cdot x_i = w^T \cdot x[/math] .

Просто так передавать взвешенную сумму [math]net[/math] на выход достаточно бессмысленно — нейрон должен ее как-то обработать и сформировать адекватный выходной сигнал. Для этих целей используют функцию активации, которая преобразует взвешенную сумму в какое-то число, которое и будет являться выходом нейрона. Функция активации обозначается [math]\phi(net)[/math] . Таким образом, выходов искусственного нейрона является [math]\phi(net)[/math] .

Для разных типов нейронов используют самые разные функции активации, но одними из самых популярных являются:

  • Функция единичного скачка. Если [math]net \gt threshold[/math] , [math]\phi(net) = 1[/math] , а иначе [math]0[/math] ;
  • Сигмоидальная функция. [math]\phi(net) = \frac[/math] , где параметр [math]a[/math] характеризует степень крутизны функции;
  • Гиперболический тангенс. [math]\phi(net) = tanh(\frac)[/math] , где параметр [math]a[/math] также определяет степень крутизны графика функции;
  • Rectified linear units (ReLU). [math]ReLU(x) = \begin x & x \geq 0 \\ 0 & x \lt 0 \end = \max(x, 0)[/math] .

Виды нейронных сетей

Разобравшись с тем, как устроен нейрон в нейронной сети, осталось понять, как их в этой сети располагать и соединять.

Как правило, в большинстве нейронных сетей есть так называемый входной слой, который выполняет только одну задачу — распределение входных сигналов остальным нейронам. Нейроны этого слоя не производят никаких вычислений. В остальном нейронные сети делятся на основные категории, представленные ниже.

Однослойные нейронные сети

Рисунок 3. Схема однослойной нейронной сети

Однослойная нейронная сеть (англ. Single-layer neural network) — сеть, в которой сигналы от входного слоя сразу подаются на выходной слой, который и преобразует сигнал и сразу же выдает ответ.

Как видно из схемы однослойной нейронной сети, представленной справа, сигналы [math]x_1, x_2, \ldots x_n[/math] поступают на входной слой (который не считается за слой нейронной сети), а затем сигналы распределяются на выходной слой обычных нейронов. На каждом ребре от нейрона входного слоя к нейрону выходного слоя написано число — вес соответствующей связи.

Многослойные нейронные сети

Рисунок 4. Схема многослойной нейронной сети

Многослойная нейронная сеть (англ. Multilayer neural network) — нейронная сеть, состоящая из входного, выходного и расположенного(ых) между ними одного (нескольких) скрытых слоев нейронов.

Помимо входного и выходного слоев эти нейронные сети содержат промежуточные, скрытые слои. Такие сети обладают гораздо большими возможностями, чем однослойные нейронные сети, однако методы обучения нейронов скрытого слоя были разработаны относительно недавно.

Работу скрытых слоев нейронов можно сравнить с работой большого завода. Продукт (выходной сигнал) на заводе собирается по стадиям на станках. После каждого станка получается какой-то промежуточный результат. Скрытые слои тоже преобразуют входные сигналы в некоторые промежуточные результаты.

Сети прямого распространения

Сети прямого распространения (англ. Feedforward neural network) (feedforward сети) — искусственные нейронные сети, в которых сигнал распространяется строго от входного слоя к выходному. В обратном направлении сигнал не распространяется.

Все сети, описанные выше, являлись сетями прямого распространения, как следует из определения. Такие сети широко используются и вполне успешно решают определенный класс задач: прогнозирование, кластеризация и распознавание.

Однако сигнал в нейронных сетях может идти и в обратную сторону.

Сети с обратными связями

Рисунок 5. Схема сети с обратными связями

Сети с обратными связями (англ. Recurrent neural network) — искусственные нейронные сети, в которых выход нейрона может вновь подаваться на его вход. В более общем случае это означает возможность распространения сигнала от выходов к входам.

В сетях прямого распространения выход сети определяется входным сигналом и весовыми коэффициентами при искусственных нейронах. В сетях с обратными связями выходы нейронов могут возвращаться на входы. Это означает, что выход какого-нибудь нейрона определяется не только его весами и входным сигналом, но еще и предыдущими выходами (так как они снова вернулись на входы).

Обучение нейронной сети

Обучение нейронной сети — поиск такого набора весовых коэффициентов, при котором входной сигнал после прохода по сети преобразуется в нужный нам выходной.

Это определение «обучения нейронной сети» соответствует и биологическим нейросетям. Наш мозг состоит из огромного количества связанных друг с другом нейросетей, каждая из которых в отдельности состоит из нейронов одного типа (с одинаковой функцией активации). Наш мозг обучается благодаря изменению синапсов — элементов, которые усиливают или ослабляют входной сигнал.

Если обучать сеть, используя только один входной сигнал, то сеть просто «запомнит правильный ответ», а как только мы подадим немного измененный сигнал, вместо правильного ответа получим бессмыслицу. Мы ждем от сети способности обобщать какие-то признаки и решать задачу на различных входных данных. Именно с этой целью и создаются обучающие выборки.

Обучающая выборка — конечный набор входных сигналов (иногда вместе с правильными выходными сигналами), по которым происходит обучение сети.

После обучения сети, то есть когда сеть выдает корректные результаты для всех входных сигналов из обучающей выборки, ее можно использовать на практике. Однако прежде чем сразу использовать нейронную сеть, обычно производят оценку качества ее работы на так называемой тестовой выборке.

Тестовая выборка — конечный набор входных сигналов (иногда вместе с правильными выходными сигналами), по которым происходит оценка качества работы сети.

Само обучение нейронной сети можно разделить на два подхода: обучение с учителем [на 28.01.19 не создан] и обучение без учителя [на 28.01.19 не создан] . В первом случае веса меняются так, чтобы ответы сети минимально отличались от уже готовых правильных ответов, а во втором случае сеть самостоятельно классифицирует входные сигналы.

Перцептрон

Рисунок 6. Схема перцептрона

Перцептрон (англ. Perceptron) — простейший вид нейронных сетей. В основе лежит математическая модель восприятия информации мозгом, состоящая из сенсоров, ассоциативных и реагирующих элементов.

История

Идею перцептрона предложил нейрофизиолог Фрэнк Розенблатт. Он предложил схему устройства, моделирующего процесс человеческого восприятия, и назвал его «перцептроном» (от латинского perceptio — восприятие). В 1960 году Розенблатт представил первый нейрокомпьютер — «Марк-1», который был способен распознавать некоторые буквы английского алфавита.

Таким образом перцептрон является одной из первых моделей нейросетей, а «Марк-1» — первым в мире нейрокомпьютером.

Описание

В основе перцептрона лежит математическая модель восприятия информации мозгом. Разные исследователи по-разному его определяют. В самом общем своем виде (как его описывал Розенблатт) он представляет систему из элементов трех разных типов: сенсоров, ассоциативных элементов и реагирующих элементов.

Принцип работы перцептрона следующий:

  1. Первыми в работу включаются S-элементы. Они могут находиться либо в состоянии покоя (сигнал равен 0), либо в состоянии возбуждения (сигнал равен 1);
  2. Далее сигналы от S-элементов передаются A-элементам по так называемым S-A связям. Эти связи могут иметь веса, равные только -1, 0 или 1;
  3. Затем сигналы от сенсорных элементов, прошедших по S-A связям, попадают в A-элементы, которые еще называют ассоциативными элементами;
    • Одному A-элементу может соответствовать несколько S-элементов;
    • Если сигналы, поступившие на A-элемент, в совокупности превышают некоторый его порог ​ [math]\theta[/math] ​, то этот A-элемент возбуждается и выдает сигнал, равный 1;
    • В противном случае (сигнал от S-элементов не превысил порога A-элемента), генерируется нулевой сигнал;
  4. Далее сигналы, которые произвели возбужденные A-элементы, направляются к сумматору (R-элемент), действие которого нам уже известно. Однако, чтобы добраться до R-элемента, они проходят по A-R связям, у которых тоже есть веса (которые уже могут принимать любые значения, в отличие от S-A связей);
  5. R-элемент складывает друг с другом взвешенные сигналы от A-элементов, а затем
    • если превышен определенный порог, генерирует выходной сигнал, равный 1;
    • eсли порог не превышен, то выход перцептрона равен -1.

Для элементов перцептрона используют следующие названия:

  • S-элементы называют сенсорами;
  • A-элементы называют ассоциативными;
  • R-элементы называют реагирующими.

Классификация перцептронов

Рисунок 7. Схема однослойного перцептрона

Перцептрон с одним скрытым слоем (элементарный перцептрон, англ. elementary perceptron) — перцептрон, у которого имеется только по одному слою S, A и R элементов.

Однослойный персептрон (англ. Single-layer perceptron) — перцептрон, каждый S-элемент которого однозначно соответствует одному А-элементу, S-A связи всегда имеют вес 1, а порог любого А-элемента равен 1. Часть однослойного персептрона соответствует модели искусственного нейрона.

Его ключевая особенность состоит в том, что каждый S-элемент однозначно соответствует одному A-элементу, все S-A связи имеют вес, равный +1, а порог A элементов равен 1. Часть однослойного перцептрона, не содержащая входы, соответствует искусственному нейрону, как показано на картинке. Таким образом, однослойный перцептрон — это искусственный нейрон, который на вход принимает только 0 и 1.

Однослойный персептрон также может быть и элементарным персептроном, у которого только по одному слою S,A,R-элементов.

Многослойный перцептрон по Розенблатту (англ. Rosenblatt multilayer perceptron) — перцептрон, который содержит более 1 слоя А-элементов.

Многослойный перцептрон по Румельхарту (англ. Rumelhart multilater perceptron) — частный случай многослойного персептрона по Розенблатту, с двумя особенностями:

  • S-A связи могут иметь произвольные веса и обучаться наравне с A-R связями;
  • Обучение производится по специальному алгоритму, который называется обучением по методу обратного распространения ошибки.

Обучение перцептрона

Задача обучения перцептрона — подобрать такие [math]w_0, w_1, w_2, \ldots, w_n[/math] , чтобы [math]sign(\sigma(w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + \ldots + w_n \cdot x_n))[/math] как можно чаще совпадал с [math]y(x)[/math] — значением в обучающей выборке (здесь [math]\sigma[/math] — функция активации). Для удобства, чтобы не тащить за собой свободный член [math]w_0[/math] , добавим в вектор $x$ лишнюю «виртуальную размерность» и будем считать, что [math]x = (1, x_1, x_2, \ldots, x_n)[/math] . Тогда [math]w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + \ldots + w_n \cdot x_n[/math] можно заменить на [math]w^T \cdot x[/math] .

Чтобы обучать эту функцию, сначала надо выбрать функцию ошибки, которую потом можно оптимизировать градиентным спуском. Число неверно классифицированных примеров не подходит на эту кандидатуру, потому что эта функция кусочно-гладкая, с массой разрывов: она будет принимать только целые значения и резко меняться при переходе от одного числа неверно классифицированных примеров к другому. Поэтому использовать будем другую функцию, так называемый критерий перцептрона: [math]E_P(w) = -\sum_ y(x)(\sigma(w^T \cdot x))[/math] , где [math]M[/math] — множество примеров, которые перцептрон с весами [math]w[/math] классифицирует неправильно.

Иначе говоря, мы минимизируем суммарное отклонение наших ответов от правильных, но только в неправильную сторону; верный ответ ничего не вносит в функцию ошибки. Умножение на [math]y(x)[/math] здесь нужно для того, чтобы знак произведения всегда получался отрицательным: если правильный ответ −1, значит, перцептрон выдал положительное число (иначе бы ответ был верным), и наоборот. В результате у нас получилась кусочно-линейная функция, дифференцируемая почти везде, а этого вполне достаточно.

Теперь [math]E_P(w)[/math] можно оптимизировать градиентным спуском. На очередном шаге получаем: [math]w^ = w^ − \eta\triangledown_w E_P(w)[/math] .

Алгоритм такой — мы последовательно проходим примеры [math]x_1, x_2, \ldots[/math] из обучающего множества, и для каждого [math]x_n[/math] :

  • если он классифицирован правильно, не меняем ничего;
  • а если неправильно, прибавляем [math]\eta \triangledown_w E_P(w)[/math] .

Ошибка на примере [math]x_n[/math] при этом, очевидно, уменьшается, но, конечно, совершенно никто не гарантирует, что вместе с тем не увеличится ошибка от других примеров. Это правило обновления весов так и называется — правило обучения перцептрона, и это было основной математической идеей работы Розенблатта.

Применение

  • Решение задач классификации, если объекты классификации обладают свойством линейной разделимости;
  • Прогнозирование и распознавание образов;
  • Управление агентами [3] .

Примеры кода

Пример использования с помощью scikit-learn [4]

Будем классифицировать с помощью перцептрона датасет MNIST [5] .

# Load required libraries from sklearn import datasets from sklearn.preprocessing import StandardScaler from sklearn.linear_model import Perceptron #Single-layer perceptron from sklearn.neural_network import MLPClassifier #Multilayer perceptron from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import numpy as np
# Load the mnist dataset mnist = datasets.load_digits()
# Create our X and y data n_samples = len(mnist.images) X = mnist.images.reshape((n_samples, -1)) y = mnist.target
# Split the data into 70% training data and 30% test data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
# Train the scaler, which standarizes all the features to have mean=0 and unit variance sc = StandardScaler() sc.fit(X_train)
# Apply the scaler to the X training data X_train_std = sc.transform(X_train)
# Apply the SAME scaler to the X test data X_test_std = sc.transform(X_test)
# Create a single-layer perceptron object with the parameters: 40 iterations (epochs) over the data, and a learning rate of 0.1 ppn = Perceptron(n_iter=40, eta0=0.1, random_state=0) # Create a multilayer perceptron object mppn = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(256, 512, 128), random_state=1)
# Train the perceptrons ppn.fit(X_train_std, y_train) mppn.fit(X_train_std, y_train)
# Apply the trained perceptrons on the X data to make predicts for the y test data y_pred = ppn.predict(X_test_std) multi_y_pred = mppn.predict(X_test_std)
# View the accuracies of the model, which is: 1 - (observations predicted wrong / total observations) print('Single-layer perceptron accuracy: %.4f' % accuracy_score(y_test, y_pred)) print('Multilayer perceptron accuracy: %.4f' % accuracy_score(y_test, multi_y_pred))
Single-layer perceptron accuracy: 0.9574 Multilayer perceptron accuracy: 0.9759
Пример использования с помощью tensorflow [6]

Будем классифицировать цифры из того же датасета MNIST.

# Load required libraries import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data
#Load MNIST dataset mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
#placeholder for test data x = tf.placeholder(tf.float32, [None, 784]) #placeholder for weights and bias W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) #tensorflow model y = tf.nn.softmax(tf.matmul(x, W) + b) #loss function y_ = tf.placeholder(tf.float32, [None, 10]) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
#gradient descent step train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict=) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print("Accuracy: %s" % sess.run(accuracy, feed_dict=))

Рисунок 8.
Правильные метки — 5, 4, 9, 7.
Результат классификации — 6, 6, 4, 4.

Accuracy: 0.9164

На рисунке справа показаны четыре типичных изображения, на которых классификаторы ошибаются. Согласитесь, случаи действительно тяжелые.

Пример на языке Java

Пример классификации с применением weka.classifiers.functions.MultilayerPerceptron [7]

 nz.ac.waikato.cms.weka weka-stable 3.8.0  
import weka.classifiers.functions.MultilayerPerceptron; import weka.core.converters.CSVLoader; import java.io.File;
// read train & test datasets and build MLP classifier var trainds = new DataSource("etc/train.csv"); var train = trainds.getDataSet(); train.setClassIndex(train.numAttributes() - 1); var testds = new DataSource("etc/test.csv"); var test = testds.getDataSet(); test.setClassIndex(test.numAttributes() - 1); var mlp = new MultilayerPerceptron(); mlp.buildClassifier(train); // Test the model var eTest = new Evaluation(train); eTest.evaluateModel(mlp, test); // Print the result à la Weka explorer: var strSummary = eTest.toSummaryString(); System.out.println(strSummary);

См. также

  • Сверточные нейронные сети
  • Рекуррентные нейронные сети
  • Рекурсивные нейронные сети [на 28.01.19 не создан]

Примечания

  1. ↑Artificial neuron, Wikipedia
  2. ↑Perceptron, Wikipedia
  3. ↑Применения перцептрона, Wikipedia
  4. ↑Библиотека scikit-learn для Python
  5. ↑Датасет MNIST
  6. ↑Библиотека tensorflow для Python
  7. ↑Weka, MLP

Источники информации

  • Сергей Николенко, Артур Кадурин, Екатерина Архангельская. Глубокое обучение. Погружение в мир нейронных сетей. — «Питер», 2018. — С. 93-123.
  • Нейронные сети — учебник

Персептрон Розенблатта.

Одной из первых искусственных сетей, способных к перцепции (восприятию) и формированию реакции на воспринятый стимул, явился PERCEPTRON Розенблатта (F.Rosenblatt, 1957). Персептрон рассматривался его автором не как конкретное техническое вычислительное устройство, а как модель работы мозга. Нужно заметить, что после нескольких десятилетий исследований современные работы по искусственным нейронным сетям редко преследуют такую цель. Рис. 4.1. Элементарный персептрон Розенблатта. Простейший классический персептрон содержит нейрободобные элементы трех типов (см. Рис. 4.1), назначение которых в целом соответствует нейронам рефлекторной нейронной сети, рассмотренной в предыдущей лекции. S-элементы формируют сетчатку сенсорных клеток, принимающих двоичные сигналы от внешнего мира. Далее сигналы поступают в слой ассоциативных или A-элементов (для упрощения изображения часть связей от входных S-клеток к A-клеткам не показана). Только ассоциативные элементы, представляющие собой формальные нейроны, выполняют нелинейную обработку информации и имеют изменяемые веса связей. R-элементы с фиксированными весами формируют сигнал реакции персептрона на входной стимул. Розенблатт называл такую нейронную сеть трехслойной, однако по современной терминологии, используемой в этой книге, представленная сеть обычно называется однослойной, так как имеет только один слой нейропроцессорных элементов. Однослойный персептрон характеризуется матрицей синаптических связей W от S- к A-элементам. Элемент матрицы отвечает связи, ведущей от i-го S-элемента к j-му A-элементу. В Корнельской авиационной лаборатории была разработана электротехническая модель персептрона MARK-1, которая содержала 8 выходных R-элементов и 512 A-элементов, которые можно было соединять в различных комбинациях. На этом персептроне была проведена серия экспериментов по распознаванию букв алфавита и геометрических образов. В работах Розенблатта был сделано заключение о том, что нейронная сеть рассмотренной архитектуры будет способна к воспроизведению любой логической функции, однако, как было показано позднее М.Минским и С.Пейпертом (M.Minsky, S.Papert, 1969), этот вывод оказался неточным. Были выявлены принципиальные неустранимые ограничения однослойных персептронов, и в последствии стал в основном рассматриваться многослойный вариант персептрона, в котором имеются несколько слоев процессорных элементов. С сегодняшних позиций однослойный персептрон представляет скорее исторический интерес, однако на его примере могут быть изучены основные понятия и простые алгоритмы обучения нейронных сетей.

Теорема об обучении персептрона.

Обучение сети состоит в подстройке весовых коэффициентов каждого нейрона. Пусть имеется набор пар векторов (x  , y  ),  = 1..p, называемый обучающей выборкой. Будем называть нейронную сеть обученной на данной обучающей выборке, если при подаче на входы сети каждого вектора x  на выходах всякий раз получается соответсвующий вектор y  Предложенный Ф.Розенблаттом метод обучения состоит в итерационной подстройке матрицы весов, последовательно уменьшающей ошибку в выходных векторах. Алгоритм включает несколько шагов:

Шаг 0. Начальные значения весов всех нейронов полагаются случайными.
Шаг 1. Сети предъявляется входной образ x  , в результате формируется выходной образ
Шаг 2. Вычисляется вектор ошибки , делаемой сетью на выходе. Дальнейшая идея состоит в том, что изменение вектора весовых коэффициентов в области малых ошибок должно быть пропорционально ошибке на выходе, и равно нулю если ошибка равна нулю.
Шаг 3. Вектор весов модифицируется по следующей формуле: . Здесь — темп обучения.
Шаг 4. Шаги 1-3 повторяются для всех обучающих векторов. Один цикл последовательного предъявления всей выборки называется эпохой. Обучение завершается по истечении нескольких эпох, а) когда итерации сойдутся, т.е. вектор весов перестает измеяться, или б) когда полная просуммированная по всем векторам абсолютная ошибка станет меньше некоторого малого значения.

Используемая на шаге 3 формула учитывает следующие обстоятельства: а) модифицируются только компоненты матрицы весов, отвечающие ненулевым значениям входов; б) знак приращения веса соответствует знаку ошибки, т.е. положительная ощибка ( > 0, значение выхода меньше требуемого) проводит к усилению связи; в) обучение каждого нейрона происходит независимо от обучения остальных нейронов, что соответсвует важному с биологической точки зрения, принципу локальности обучения. Данный метод обучения был назван Ф.Розенблаттом “методом коррекции с обратной передачей сигнала ошибки”. Позднее более широко стало известно название “ -правило”. Представленный алгоритм относится к широкому классу алгоритмов обучения с учителем, поскольку известны как входные вектора, так и требуемые значения выходных векторов (имеется учитель, способный оценить правильность ответа ученика). Доказанная Розенблаттом теорема о сходимости обучения по  -правилу говорит о том, что персептрон способен обучится любому обучающему набору, который он способен представить. Ниже мы более подробно обсудим возможности персептрона по представлению информации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *