Чем меньше сопротивление тем больше мощность
Перейти к содержимому

Чем меньше сопротивление тем больше мощность

Урок №2. Напряжение и сопротивление. Закон Ома. Мощность и работа.

В электротехнике сопротивление есть свойство проводника оказывать более или менее большое сопротивление току. Оно зависит от природы самого проводника, т.е. от числа электронов, легкоотделяемых от его атомов. Сопротивление зависит также от длины проводника: чем больше его длина, тем больше сопротивление. Наконец, оно зависит от сечения проводника: чем больше сечение , тем больше электронов может проходить одновременно и, следовательно, сопротивление будет меньше. Сопротивление измеряется в омах (Ом), тысячах Ом, или килоом (кОм) и миллионах Ом или мегаом (Мом). 1 Ом – это приблизительно сопротивление, которое имеет медная проволока длиной 62 м и сечением 1 мм.кв.

Говоря о проводниках, мы имеем в виду вещества, материалы и прежде всего металлы, относительно хорошо проводящие ток. Однако не все вещества, называемые проводниками, одинаково хорошо проводят электрический ток, т. е. они, как говорят, обладают неодинаковой проводимостью тока. Объясняется это тем, что при своем движении свободные электроны сталкиваются с атомами и молекулами, причем разные атомы и молекулы в разной степени мешают движению электронов. Говоря иными словами, одни вещества оказывают движению электронов большее сопротивление, а другие — меньшее. Из всех материалов, широко применяемых в электротехнике и радиотехнике, наименьшее сопротивление имеет медь. Поэтому — то электрические провода и делают чаще всего из меди. Еще меньшее сопротивление имеет серебро, но это довольно дорогой металл. Железо, алюминий и разные металлические сплавы обладают большим сопротивлением, т. е. худшей электропроводимостью.

Сопротивление проводника зависит не только от свойств его материала, но и от размера самого проводника. Толстый проводник обладает меньшим сопротивлением, чем тонкий из такого же материала; короткий проводник имеет меньшее сопротивление, чем длинный; так же как широкая и короткая труба оказывает меньшее препятствие движению воды, чем тонкая и длинная. Кроме того, сопротивление металлического проводника зависит от его температуры: чем ниже температура, тем меньше сопротивление. За единицу электрического сопротивления принят ом (пишут Ом) — по имени немецкого физика Г. Ома.

Сопротивление 1 Ом — сравнительно небольшая электрическая величина. Такое сопротивление току оказывает, например, отрезок медного провода диаметром 0,15 мм и длиной 1 м. Сопротивление нити накала лампочки фонарика около 10 Ом, нагревательного элемента электроплитки — несколько десятков ом. В радиотехнике чаще приходится иметь дело с большими сопротивлениями, у высокоомного телефона, например оно, больше 2000 Ом; у полупроводникового диода, включенного в не пропускающем ток направлении — несколько сотен тысяч ом.
? Знаете, какое сопротивление имеет ваше тело? От 1000 до 20000 Ом.А сопротивление резисторов — специальных деталей, о которых я буду еще говорить в этой беседе, могут быть до нескольких миллионов ом и больше. Эти детали, как вы уже знаете, на схемах обозначают в виде прямоугольников.
В математических формулах сопротивление обозначают латинской буквой R. Такую же букву ставят и возле графических обозначений резисторов на схемах. Для выражения больших сопротивлений резисторов используют более крупные единицы: килоом (сокращенно пишут кОм), равный 1000 Ом, и мегаом (сокращенно пишут МОм), равный 1000000 Ом, или 1000 кОм.

Сопротивление измеряют специальными приборами — омметрами. На схемах омметр обозначают кружком с греческой буквой ? (омега) внутри.

Электрическое напряжение

Напряжение – это в некотором роде давление, которое оказывает на электроны разница в электрическом состоянии концов проводника. Отношение электронов и протонов определяет электрическое состояние или потенциал атома. Представьте что у вас два атома. В первом не хватает трех электронов, во втором – пяти. Оба положительны. Но второй атом более положителен, чем первый. Но хотя оба атома положительны, можно также сказать, что относительно второго первый является отрицательным.

Другими словами. Все в жизни относительно. Например, из двух людей, имеющих деньги, тот, кто имеет 10 рублей, беден по сравнению с другим, у которого их сотни, но богат по сравнению с третьим, у которого все «богатство» — 1 000 рублей долга.

В мире атомов тот атом, который лишен трех электронов, менее отрицателен по отношению к тому, к которого не хватает десяти электронов, и положителен по отношению к тому, который имеет избыток в два электрона. Потенциалы этих трех атомов различны. Практически разность потенциалов, или, что равнозначно, напряжение, измеряется в вольтах (В).

За единицу электрического напряжения, электродвижущей силы (ЭДС) принят вольт (в честь итальянского физика А. Вольта). В формулах напряжение обозначают латинской буквой U (читается «у»), а саму единицу — вольт — буквой В. Например, пишут: U = 4,5 В; U = 220 В. Единица вольт характеризует напряжение на концах проводника, участке электрической цепи или полюсах источника тока. Напряжение 1 В — это такая электрическая величина, которая в проводнике сопротивлением 1 Ом создает ток, равный 1 А. Батарея 3336Л, предназначенная для плоского карманного электрического фонаря, состоит из трех элементов, соединенных последовательно. На этикетке батареи можно прочитать, что ее напряжение 4,5 В. Значит, напряжение каждого из элементов батареи 1,5 В. Напряжение батареи «Крона» 9 В, а напряжение электроосветительной сети может быть 127 или 220 В. Напряжение измеряют (вольтметром), подключая прибор одноименными зажимами к полюсам источника тока или параллельно участку цепи, резистору или другой нагрузке, на которой необходимо измерить действующее на ней напряжение На схемах вольтметр обозначают латинской буквой V в кружке, а рядом — PU.

Соединение вольтметра в цепь

Для оценки напряжения применяют и более крупную единицу — киловольт (пишут кВ), соответствующую 1000 В, а также более мелкие единицы — милливольт (пишут мВ), равный 0,001 В, и микровольт (пишут мкВ), равный 0,001 мВ. Эти напряжения измеряют соответственно кило — вольтметрами, милливольтметрами и микровольтметрами. Такие приборы, как и вольтметры, подключают параллельно источникам тока или участкам цепей, на которых надо измерить напряжение. Выясним теперь, в чем разница понятий «напряжение» и «электродвижущая сила». Электродвижущей силой называют напряжение, действующее между полюсами источника тока, пока к нему не подключена внешняя цепь-нагрузка, например лампочка накаливания или резистор. Как только будет подключена внешняя цепь и в ней возникнет ток, напряжение между полюсами станет меньше. Так, например, новый не бывший еще в употреблении гальванический элемент имеет ЭДС не менее 1,5 В. При подключении к нему нагрузки напряжение на его полюсах становится равным примерно 1,3-1,4 в. По мере расходования энергии элемента на питание внешней цепи его напряжение постепенно уменьшается. Элемент считается разрядившимся и, следовательно, негодным для дальнейшего применения, когда напряжение снижается до 0,7 В, хотя, если отключить внешнюю цепь, его ЭДС будет больше этого напряжения. А как оценивают переменное напряжение? Когда говорят о переменном напряжении, например о напряжении электроосветительной сети, то имеют в виду его действующее значение, составляющее примерно, как и действующее значение переменного тока, 0,7 амплитудного значения напряжения.

Закон Ома

На рисунке показана схема знакомой вам простейшей электрической цепи. Эта замкнутая цепь состоит из трех элементов: источника напряжения — батареи GB, потребителя тока — нагрузки R, которой может быть, например, нить накала электрической лампы или резистор, и проводников, соединяющих источник напряжения с нагрузкой. Между прочим, если эту цепь дополнить выключателем, то получится полная схема карманного электрического фонаря.

Простейшая электрическая цепь постоянного тока

Нагрузка R, обладающая определенным сопротивлением, является участком цепи. Значение тока на этом участке цепи зависит от действующего на нем напряжения и его сопротивления: чем больше напряжение и меньше сопротивление, тем большим ток будет идти по участку цепи. Эта зависимость тока от напряжения и сопротивления выражается следующей формулой:

I = U/R

где I — ток, выраженный в амперах, А; U — напряжение в вольтах, В; R — сопротивление в омах, Ом. Читается это математическое выражение так: ток на участке цепи прямо пропорционален напряжению на нем и обратно пропорционален его сопротивлению. Это основной закон электротехники, именуемый законом Ома (по фамилии Г. Ома), для участка электрической цепи. Используя закон Ома, можно по двум известным электрическим величинам узнать неизвестную третью. Вот несколько примеров практического применения закона Ома.

Первый пример: На участке цепи, обладающем сопротивлением 5 Ом, действует напряжение 25 В. Надо узнать значение тока на этом участке цепи.
Решение: I = U/R = 25 / 5 = 5 А.
Второй пример: На участке цепи действует напряжение 12 В, создавая в нем ток, равный 20 мА. Каково сопротивление этого участка цепи? Прежде всего ток 20 мА нужно выразить в амперах. Это будет 0,02 А. Тогда R = 12 / 0,02 = 600 Ом.
Третий пример: Через участок цепи сопротивлением 10 кОм течет ток 20 мА. Каково напряжение, действующее на этом участке цепи? Здесь, как и в предыдущем примере, ток должен быть выражен в амперах (20 мА = 0,02 А), сопротивление в омах (10кОм = 10000Ом). Следовательно, U = IR = 0,02 х 10000 = 200 В. На цоколе лампы накаливания плоского карманного фонаря выштамповано: 0,28 А и 3,5 В. О чем говорят эти сведения? О том, что лампочка будет нормально светиться при токе 0,28 А, который обусловливается напряжением 3,5 В, Пользуясь законом Ома, нетрудно подсчитать, что накаленная нить лампочки имеет сопротивление R = 3,5 / 0,28 = 12,5 Ом. Это, подчеркиваю, сопротивление накаленной нити лампочки. А сопротивление остывшей нити значительно меньше. Закон Ома справедлив не только для участка, но и для всей электрической цепи. В этом случае в значение R подставляется суммарное сопротивление всех элементов цепи, в том числе и внутреннее сопротивление источника тока. Однако при простейших расчетах цепей обычно пренебрегают сопротивлением соединительных проводников и внутренним сопротивлением источника тока.
В связи с этим приведу еще один пример: Напряжение электроосветительной сети 220 В. Какой ток потечет в цепи, если сопротивление нагрузки равно 1000Ом? Решение: I = U/R = 220 / 1000 = 0,22 А. Примерно такой ток потребляет электрический паяльник.
Всеми этими формулами, вытекающими из закона Ома, можно пользоваться и для расчета цепей переменного тока, но при условии, если в цепях нет катушек индуктивности и конденсаторов.
Закон Ома и производные от него расчетные формулы, достаточно легко запомнить, если пользоваться вот этой графической схемой, т. н. треугольник закона Ома:

Треугольник закона Ома

>Пользоваться этим треугольником легко, достаточно четко запомнить, что горизонтальная линия в треугольнике означает знак деления (по аналогии дробной черты), а вертикальная линия в треугольнике означает знак умножения.

Теперь рассмотрим такой вопрос: как влияет на ток резистор, включаемый в цепь последовательно с нагрузкой или параллельно ей? Разберем такой пример. У нас имеется лампочка от круглого электрического, фонаря, рассчитанная на напряжение 2,5 В и ток 0,075 А. Можно ли питать эту лампочку от батареи 3336Л, начальное напряжение которой 4,5 В? Нетрудно подсчитать, что накаленная нить этой лампочки имеет сопротивление немногим больше 30 Ом. Если же питать ее от свежей батареи 3336Л, то через нить накала лампочки, по закону Ома, пойдет ток, почти вдвое превышающий тот ток, на который она рассчитана. Такой перегрузки нить не выдержит, она перекалится и разрушится. Но эту лампочку все же можно питать от батареи 336Л, если последовательно в цепь включить добавочный резистор сопротивлением 25 Ом, как это показано на рис..

Добавочный резистор, включенный в цепь, ограничивает ток в этой цепи.

В этом случае общее сопротивление внешней цепи будет равно примерно 55 Ом, т.е. 30 Ом — сопротивление нити лампочки Н плюс 25 Ом — сопротивление добавочного резистора R. В цепи, следовательно, потечет ток, равный примерно 0,08 А, т.е. почти такой же, на который рассчитана нить накала лампочки. Эту лампочку можно питать от батареи и с более высоким напряжением и даже от электроосветительной сети, если подобрать резистор соответствующего сопротивления. В этом примере добавочный резистор ограничивает ток в цепи до нужного нам значения. Чем больше будет его сопротивление, тем меньше будет и ток в цепи. В данном случае в цепь было включено последовательно два сопротивления: сопротивление нити лампочки и сопротивление резистора. А при последовательном соединении сопротивлений ток одинаков во всех точках цепи. Можно включать амперметр в любую точку цепи, и всюду он будет показывать одно значение. Это явление можно сравнить с потоком воды в реке. Русло реки на различных участках может быть широким или узким, глубоким или мелким. Однако за определенный промежуток времени через поперечное сечение любого участка русла реки всегда проходит одинаковое количество воды.
Добавочный резистор, включаемый в цепь последовательно с нагрузкой (как, например, на рис. выше), можно рассматривать как резистор, «гасящий» часть напряжения, действующего в цепи. Напряжение, которое гасится добавочным резистором или, как говорят, падает на нем, будет тем большим, чем больше сопротивление этого резистора. Зная ток и сопротивление добавочного резистора, падение напряжения на нем легко подсчитать все по той же знакомой вам формуле U = IR, Здесь U — падение напряжения, В; I — ток в цепи, A; R — сопротивление добавочного резистора, Ом. Применительно к нашему примеру резистор R ( на рис.) погасил избыток напряжения: U = IR = 0,08 х 25 = 2 В. Остальное напряжение батареи, равное приблизительно 2,5 В, упало на нити лампочки. Необходимое сопротивление резистора можно найти по другой знакомой вам формуле R = U/I, где R — искомое сопротивление добавочного резистора, Ом; U-напряжение, которое необходимо погасить, В; I — ток в цепи, А. Для нашего примера сопротивление добавочного резистора равно: R = U/I = 2/0,075, 27 Ом. Изменяя сопротивление, можно уменьшать или увеличивать напряжение, которое падает на добавочном резисторе, и таким образом регулировать ток в цепи. Но добавочный резистор R в такой цепи может быть переменным, т.е. резистором, сопротивление которого можно изменять (см. рис. ниже).

Регулирование тока в цепи с помощью переменного резистора.

В этом случае с помощью движка резистора можно плавно изменять напряжение, подводимое к нагрузке Н, а значит, плавно регулировать ток, протекающий через эту нагрузку. Включенный таким образом переменный резистор называют реостатом, С помощью реостатов регулируют токи в цепях приемников, телевизоров и усилителей. Во многих кинотеатрах реостаты использовали для плавного гашения света в зрительном зале. Есть, однако, и другой способ подключения нагрузки к источнику тока с избыточным напряжением — тоже с помощью переменного резистора, но включенного потенциометром, т.е. делителем напряжения, как показано на рис..

Регулирование напряжения на нагрузке R2 с помощью переменного резистора включенного в электрическую цепь потенциометром.

Здесь R1 — резистор, включенный потенциометром, a R2 — нагрузка, которой может быть та же лампочка накаливания или какой — то другой прибор. На резисторе R1 происходит падение напряжения источника тока, которое частично или полностью может быть подано к нагрузке R2. Когда движок резистора находится в крайнем нижнем положении, к нагрузке напряжение вообще не подается (если это лампочка, она гореть не будет). По мере перемещения движка резистора вверх мы будем подавать все большее напряжение к нагрузке R2 (если это лампочка, ее нить будет накаливаться). Когда же движок резистора R1 окажется в крайнем верхнем положении, к нагрузке R2 будет подано все напряжение источника тока (если R2 — лампочка карманного фонаря, а напряжение источника тока большое, нить лампочки перегорит). Можно опытным путем найти такое положение движка переменного резистора, при котором к нагрузке будет подано необходимое ей напряжение. Переменные резисторы, включаемые потенциометрами, широко используют для регулирования громкости в приемниках и усилителях. Резистор может быть непосредственно подключен параллельно нагрузке. В таком случае ток на этом участке цепи разветвляется и идет двумя параллельными путями: через добавочный резистор и основную нагрузку. Наибольший ток будет в ветви с наименьшим сопротивлением. Сумма же токов обеих ветвей будет равна току, расходуемому на питание внешней цепи. К параллельному соединению прибегают в тех Случаях, когда надо ограничить ток не во всей цепи, как при последовательном включении добавочного резистора, а только на каком — то участке. Добавочные резисторы подключают, например, параллельно миллиамперметрам, чтобы ими можно было измерять большие токи. Такие резисторы называют шунтирующими или шунтами. Слово шунт означает ответвление.

Мощность и работа

На нагрев нити накала электрической или электронной лампы, электропаяльника, электроплитки или иного прибора затрачивается некоторое количество электроэнергии. Эту энергию, отдаваемую источником тока (или получаемую от него нагрузкой) в течение 1 с, называют мощностью тока.

За единицу мощности тока принят ватт (Вт). Ватт — это мощность, которую развивает постоянный ток 1А при напряжении 1В. В формулах мощность тока обозначают латинской буквой Р (читается «пэ»). Электрическую мощность в ваттах получают умножением напряжения в вольтах на ток в амперах, т.е. P = UI.

Если, например, источник постоянного тока напряжением 4,5 В создает в цепи ток 0,1 А, то мощность тока будет: р = 4,5 х 0,1 = 0,45 Вт. Пользуясь этой формулой, можно, например, подсчитать мощность, потребляемую лампочкой карманного фонаря, если 3,5 В умножить на 0,28 А. Получим около 1 Вт. Изменив эту формулу так: I = P/U, можно узнать ток, протекающий через электрический прибор, если известны потребляемая им мощность и подводимое к нему напряжение. Каков, например, ток, идущий через электрический паяльник, если известно, что при напряжении 220 В он потребляет мощность 40 Вт? I = P/I = 40/220 = 0,18 А. Если известны ток и сопротивление цепи, но неизвестно напряжение, мощность можно подсчитать по такой формуле: P = I2R. Когда же известны напряжение, действующее в цепи, и сопротивление этой цепи, то для подсчета мощности используют такую формулу: Р = U2/R. Но ватт — сравнительно небольшая единица мощности.

Когда приходится иметь дело с электрическими устройствами, приборами или машинами, потребляющими токи в десятки, сотни ампер, используют единицу мощности киловатт (пишут кВт), равную 1000 Вт. Мощности электродвигателей заводских станков, например, могут составлять от нескольких единиц до десятков киловатт. Количественный расход электроэнергии оценивают ватт — секундой, характеризующей единицу энергии — джоуль.

Расход электроэнергии определяют умножением мощности, потребляемой прибором, на время его работы в секундах. Если, например, лампочка электрического фонарика (ее мощность, как мы уже знаем, около 1 Вт) горела 25 с, значит, расход энергии составил 25 ватт — секунд. Однако ватт — секунда величина очень малая. Поэтому на практике используют более крупные единицы расхода электроэнергии: ватт — час, гектоватт — час и киловатт — час. Чтобы расход энергии был выражен в ватт — часах или киловатт — часах, нужно соответственно мощность в ваттах или киловаттах умножить на время в часах. Если, например, прибор потребляет мощность 0,5 кВт в течение 2 ч, то расход энергии составит 0,5 Х 2 = 1 кВт ч; 1 кВт ч энергии будет также израсходован, если цепь будет потреблять (или расходовать) мощность 2 кВт в течение получаса, 4 кВт в течение четверти часа и т.д. Электрический счетчик, установленный в доме или квартире, где вы живете, учитывает расход электроэнергии в киловатт — часах. Умножив показания счетчика на стоимость 1 кВт-ч (сумма в коп.), вы узнаете, на какую сумму израсходовано энергии за неделю, месяц.

При работе с гальваническими элементами или батареями говорят об их электрической емкости в ампер — часах, которая выражается произведением значения разрядного тока на длительность работы в часах. Начальная емкость батареи 3336Л, например 0,5 Ач. Подсчитай: сколько времени будет батарея непрерывно работать, если разряжать ее током 0,28 А (ток лампочки фонаря)? Примерно один и три четверти часа. Если же эту батарею разряжать более интенсивно, например, током 0,5 А, она будет работать меньше 1 ч. Таким образом, зная емкость гальванического элемента или батареи и токи, потребляемые их нагрузками, можно подсчитать примерное время, в течение которого будут работать эти химические источники тока. Начальная емкость, а также рекомендуемый разрядный ток или сопротивление внешней цепи, определяющее разрядный ток элемента или батареи, указывают иногда на их этикетках или в справочной литературе.

В этом уроке я попытался систематизировать и выложить максимум необходимой для начинающего радиолюбителя информации по основам электротехники, без которых дальше нет смысла, что то, продолжать изучать. Урок, получился пожалуй самый продолжительный, но и самый важный. Советую отнестись к этому уроку более серьезно, обязательно заучить выделенные определения, если что то, непонятно, перечитывайте несколько раз, что бы вникнуть в суть сказанного. В качестве практической работы, можете поэксперементировать со схемами изображенными на рисунках, т. е. с батарейками лампочками и переменным резистором. Это пойдет вам на пользу. А вообще, в этом уроке, конечно же, весь упор нужно сделать не на практику, а на усвоение теории.

Содержание курса и следующий урок можете найди здесь.

По материалам сайта lessonradio.narod.ru

Вольты, ватты и омы – как они влияют на работу электронных сигарет?

Внимательный курильщик э-сигарет, определённо, замечал, что ассортимент э-сигарет в магазинах стремительно расширяется – в продаже есть как простые одноразовые палочки, так и сложные модели с цветными кнопочками, дисками и дисплеями. Для того чтобы упростить нашу жизнь, сделать её удобней и приятней, эти «гаджеты» также постоянно развиваются. Далее мы поговорим о новейших моделях э-сигарет, которые позволяют пользователю самостоятельно регулировать количество пара, интенсивность затяжки и вкуса.

Поскольку вкусы и привычки у всех людей разные, специалисты разработали такие э-сигареты, которые позволяют пользователю самому регулировать силу затяжки, количество пара и интенсивность вкуса. Одному нравится мягкое и лёгкое общение с э-сигаретой, другой предпочитает серьёзный «выхлоп», иначе э-сигарета не удовлетворит его аппетит курильщика, а третьему подходит нечто среднее.

В этой статье мы рассмотрим совокупное воздействие сопротивления (Ом), напряжения (Вольт) и мощности (Ватт) и узнаем, что чем меньше сопротивление и чем выше напряжение, тем больше количество пара, сильнее «выхлоп» и интенсивнее вкус.

Однако до того как начать урок физики, стоит отметить, что в действительности пользователь э-сигареты даже без специальных физических знаний может легко справиться с напряжением и сопротивлением, не сильно углубляясь в научные исследования.

Сопротивление (Ом Ω)

Что такое Ом?
Ом – единица измерения сопротивления. Чем меньше сопротивление испарителя Вашей э-сигареты, тем больше тока через него проходит. Если Вы повышаете уровень сопротивления, то на столько же меньше тока пройдёт через испаритель.

Какое сопротивление лучше использовать?
Это зависит от Ваших предпочтений – насколько интенсивный вкус и «выхлоп» Вы предпочитаете? Также зависит от того, какое соотношение напряжения (Вольт) и сопротивления (Ом) Вы используете. При этом различные э-жидкости ведут себя по-разному, а использование разного сопротивления влияет на вкус. Поэтому для достижения оптимальных качеств э-сигареты потребуются эксперименты. Далее мы приведём свойства э-сигареты при использовании испарителя с различным сопротивлением.

При использовании испарителя с низким сопротивлением тока будет больше, поэтому:

  • В нагревательном элементе генерируется больше тепла
  • Генерируется больше пара
  • Вкус менее интенсивный
  • Пар теплее
  • Аккумулятор разряжается быстрее
  • Срок эксплуатации аккумулятора уменьшается
  • Э-жидкость быстрее заканчивается Срок эксплуатации испарителя уменьшается (испаритель с очень низким сопротивлением может продержаться всего 2-3 дня)
  • Высока вероятность, что Вы получите «сухую затяжку» („dry hit“)

При использовании испарителя с высоким сопротивлением получается обратный эффект:

  • Через нагревательный элемент проходит меньше тока
  • Происходит меньший нагрев испарителя
  • Меньшее количество пара
  • Пар холоднее
  • Пар с более интенсивным вкусом
  • Срок эксплуатации аккумулятора увеличивается
  • Меньше расходуется э-жидкости (хватит надолго)
  • Маловероятно, что Вы получите «сухую затяжку» („dry hit“)

Изменяемое напряжение (V) и мощность (W)

Сопротивление испарителя – не единственный показатель, который контролирует количество пара, интенсивность вкуса и «выхлопа», – это также зависит от вырабатываемой аккумулятором мощности (W) в испарителе.

Имеется 2 основных типа аккумулятора э-сигареты, которые позволяют менять силу тока в испарителе, – аккумуляторы с изменяемым напряжением (VV – variable voltage) и с изменяемой мощностью (VW – variable wattage). К примеру, Nicorex предлагает аккумулятор Ola 2200 mAh. https://www.nicorex.eu/ola-2200-vvvw-akkumuliator/

Как сказано выше, интенсивность пара э-сигареты можно увеличить путём уменьшения сопротивления испарителя либо увеличения тока, проходящего через Вашу э-сигарету. Это может показаться сложным, но в действительности ничего трудного в этом нет – нужно только нажать на кнопку вверх-вниз или отрегулировать поворотный диск.

Что же делать, если Вы захотите вновь увеличить количество пара? В этом случае можно комбинировать испаритель с низким сопротивлением с аккумулятором с высоким напряжением (V) – так можно получить ещё больше пара. Однако при этом могут возникнуть проблемы: если Вы отрегулируете слишком сильно, испаритель может перегреться, при этом Вы можете получить «сухую затяжку» („dry hit“). В любом случае, срок эксплуатации испарителя резко уменьшится.

Устройства с изменяемым напряжением (V) против устройств с изменяемой мощностью (W)

Отличие изменяемого напряжения (VV) от изменяемой мощности (VW) можно сравнить с отличием автоматической коробки передач от мануальной.

В устройстве с изменяемым напряжением (VV) можно вручную регулировать напряжение – в этом случае конечная мощность зависит от сопротивления конкретного испарителя. В устройстве с изменяемой мощностью (VW) требуется только настроить мощность на желаемый уровень – и аккумулятор повышает напряжение автоматически в соответствии с сопротивлением испарителя. Аккумулятор сам распознаёт сопротивление испарителя и соответственно регулирует напряжение. В этом случае всегда обеспечена одна и та же мощность, независимо от сопротивления испарителя. Таким образом, при повышении мощности (W) повышается также и напряжение (V), и наоборот.

К примеру, если Вы используете испаритель с нагревательным элементом с сопротивлением 1,8 Ом, который работает при напряжении 3,7 Вольт, на выходе получите мощность около 7,3 Ватт – это хорошая затяжка.

Однако если Вы настроите нагревательный элемент на сопротивление выше 2,8 Ом, то заметите существенное уменьшение вкуса, количества пара и нагрева, поскольку мощность (W) ниже (около 4,4 Ватт), и для повышения мощности (W) Вам придётся повысить напряжение (V) – тогда Вы получите хорошую затяжку. Нагревательные элементы с более низким сопротивлением используют больше мощности (W), они стремятся производить больше тепла и поэтому могут перегреться быстрее, чем нагревательные элементы с более высоким сопротивлением.

Что означает mAh на аккумуляторе э-сигареты?

Вероятно, Вы замечали обозначение „mAh“ в описании различных аккумуляторов электронных сигарет. mAh по существу показывает, сколько времени может работать аккумулятор. Если вернуться к аналогии с автомобилем, то если напряжение (V) – это топливо, то mAh – это размер топливного бака: чем больше бак, тем дольше можно ехать. mAh означает миллиамперы в час и показывает ёмкость аккумулятора: чем больше это значение, тем дольше сможет работать аккумулятор.

Зависимость мощности от сопротивления

electrodrone

Просмотр профиля

26.4.2014, 23:15

Группа: Пользователи
Сообщений: 7
Регистрация: 31.3.2014
Пользователь №: 38860

Есть утверждение: «Чем больше сопротивление, тем меньший ток идет по потребителю и меньше его мощность (40Ваттные лампочки имеют большее сопротивление, чем 100Ваттные).»
Есть также задачка: «Каким сопротивлением обладает лампа мощностью 40 Вт, работающая под напряжением 220 В? Ответ: R=1210 Ом»
Эти утверждение и задачка основываются на формуле обратной зависимости мощности от сопротивления, выводимой из закона Ома:

P=UI=U*2/R (чем больше сопротивление, тем меньше мощность)

Но можно также из закона Ома вывести формулу прямой зависимости мощности от сопротивления:

P=UI=I*2xR (чем больше сопротивление, тем больше мощность)

Получаются две противоречащие друг другу формулы из закона Ома?!

Сообщение отредактировал electrodrone — 26.4.2014, 23:19

Электрическая мощность и закон Ома

Для анализа и расчета параметров нагревателей, как правило, мы используем различные методы, в частности закон Ома. Этот закон используется в основном для определения неизвестных величин, таких как напряжение, ток, сопротивление и мощность, которые связаны с одним или несколькими элементами электронной схемы. Закон Ома — основной закон теории электрических цепей, который определяет линейную зависимость между напряжением, током и сопротивлением. В данной статье мы постараемся подробно рассказать о законе Ома и его практическом применении.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Закон Ома

Закон Ома — это основной, главный и важный закон теории электрических цепей, который исследует взаимосвязь между напряжением, током и сопротивлением. В нем говорится, что при постоянной температуре ток, протекающий по цепи, прямо пропорционален напряжению или разности потенциалов в этой цепи.

В алгебраической форме, V∝ I

V = IR

I — ток, протекающий по цепи, измеряется в амперах.

V — напряжение, приложенное к цепи, измеряется в вольтах.

А R — это константа пропорциональности, называемая сопротивлением, которое измеряется в омах.

Это сопротивление также указывается в килоомах, мегаомах и т. д.

Следовательно, закон Ома гласит, что ток в цепи прямо пропорционален напряжению и обратно пропорционален сопротивлению в этой цепи. Закон Ома можно применить как к отдельным частям, так и ко всей цепи.

Математически ток, I = V/R

Напряжение, V = IR

Сопротивление, R = V/I

Треугольник закона Ома

Ниже показано, что отношение между различными величинами в законе Ома называется треугольником закона Ома. Это простой метод описания, а также простой для запоминания соотношения между напряжением, током и сопротивлением.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

На приведенном выше рисунке показан треугольник закона Ома, где отдельные термины, такие как напряжение, ток и сопротивление, и их формулы представлены из основного уравнения закона Ома. На приведенном выше рисунке один параметр вычисляется из оставшихся двух параметров. Таким образом, можно сделать вывод, что при высоком сопротивлении ток будет низким, а ток будет высоким, когда сопротивление низкое, при любом приложенном напряжении.

Электрическая мощность

Электрическая мощность дает скорость, с которой энергия передается по цепи. Электрическая мощность измеряется в ваттах. Эта мощность потребляется, когда напряжение вызывает протекание тока в цепи.

Следовательно, электрическая мощность есть произведение напряжения и силы тока.

Математически P = VI

По закону Ома V = IR и I = V/R

Подставляя в уравнение мощности

P = I 2 R

P = V 2 / R

Следовательно, электрическая мощность, P =VI или I 2 R или V 2 / R

Это три основные формулы для нахождения электрической мощности в цепи. Таким образом, мощность может быть рассчитана, когда известна любая из двух величин.

Треугольник мощности

Подобно треугольнику закона Ома, на рисунке ниже показан треугольник мощности, чтобы показать соотношение между мощностью, напряжением и током. Уравнения отдельных параметров легко запоминаются по этому рисунку. Округлите и скройте параметр, который необходимо измерить, а положение оставшихся двух параметров дает уравнение для поиска скрытого или округленного параметра, как показано на рисунке ниже.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Круговая диаграмма закона Ома

В дополнение к двум вышеупомянутым концепциям существует еще один метод определения параметров схемы с использованием закона Ома, который представляет собой круговую диаграмму закона Ома. Используя круговую диаграмму закона Ома, можно легко запомнить все уравнения для нахождения напряжения, тока, сопротивления и мощности, которые необходимы для упрощения электрических цепей, которые могут быть простыми или сложными.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

На приведенном выше рисунке показана круговая диаграмма, которая показывает взаимосвязь между мощностью, напряжением, током и сопротивлением. Эта диаграмма разделена на четыре блока для мощности, напряжения, сопротивления и тока. Каждый блок состоит из трех формул с двумя известными значениями для каждой формулы. Из диаграммы для нахождения каждого параметра в цепи мы можем использовать любую из трех доступных формул.

Графическое представление закона Ома

Для лучшего понимания этой концепции ниже приведена экспериментальная установка, в которой регулируемый источник напряжения с шестью ячейками (по 2 В каждая) подключен к нагрузочному резистору через переключатель выбора напряжения. Измерительные приборы, такие как вольтметр и амперметр, также подключены к цепи для измерения напряжения и тока в цепи.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Регулируемый источник напряжения с нагрузочным резистором

Сначала подключите резистор 10 Ом и установите переключатель в положение «1». Тогда амперметр показывает 0,2 А, а вольтметр показывает 2 В, потому что I = V/R, т. е. I = 2/10 = 0,2 А. Затем измените положение селекторного переключателя на вторую ячейку, чтобы подать 4 В на нагрузку и запишите показания амперметра. По мере того, как селектор будет постепенно изменяться от первого положения к последнему, мы получим текущие значения, такие как 0,2, 0,4, 0,6, 0,8, 1, 1,2 для значений напряжения 2, 4, 6, 8, 10 и 12 соответственно.

Точно так же поместите резистор 20 Ом вместо резистора 10 Ом и выполните ту же процедуру, что и выше. Мы получим значения тока 0,1, 0,2, 0,3, 0,4, 0,5, 0,6 для значений напряжения 2, 4, 6, 8, 10 и 12В соответственно. Постройте график этих значений, как показано ниже.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Графическое представление закона Ома

На приведенном выше графике для данного напряжения ток меньше, когда сопротивление больше. Рассмотрим случай приложенного напряжения 12 В, когда значение тока составляет 1,2 А при сопротивлении 10 Ом и 0,6 Ом при сопротивлении 20 Ом. Точно так же при одном и том же токе напряжение тем больше, чем больше сопротивление. Из приведенных выше результатов следует, что отношение напряжения к току постоянно, когда сопротивление постоянно. Следовательно, зависимость между напряжением и током является линейной, и наклон этой линейной кривой становится тем круче, чем больше сопротивление.

Пример применения закона Ома

Рассмотрим приведенную ниже схему, в которой батарея на 6 В подключена к нагрузке 6 Ом. Амперметр и вольтметры подключены к цепи для измерения тока и напряжения практически. Но используя закон Ома мы можем найти силу тока и мощность следующим образом.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Из закона Ома

V = IR

I = V/R

I = 6/6

I = 1 А

Мощность, P = VI

P = 6×1

P = 6 Вт

Но практически амперметр не показывает точное значение из-за внутреннего сопротивления батареи. Включив внутреннее сопротивление батареи (предположим, что батарея имеет внутреннее сопротивление 1 Ом), текущее значение рассчитывается следующим образом.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Общее сопротивление цепи 6+1=7 Ом.

Ток, I = V/R

I = 6/7

I = 0,85 Ампер

Цепь фар в автомобиле

На приведенном ниже рисунке показана схема фар легкового автомобиля без схемы управления. С применением закона Ома мы можем узнать ток, протекающий через каждую лампу. Как правило, каждая лампочка подключается параллельно к аккумулятору, что позволяет другим элементам светиться, даже если какой-то из них поврежден. К этим параллельным лампам подводится батарея 12 В, где лампы имеют сопротивление 2,4 каждая (считается в данном случае).

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Общее сопротивление цепи равно R = R1x R2/(R1 + R2), так как они соединены параллельно.

R = 5,76/4,8 = 1,2

Тогда ток, протекающий по цепи, равен I = V/R.

Ток, протекающий через отдельную лампу, равен I1 = I2 = 5 А (из-за одинаковых сопротивлений).

Закон Ома для цепей переменного тока

В общем, закон Ома можно применить и к цепям переменного тока . Если нагрузка индуктивная или емкостная, то также учитывается реактивное сопротивление нагрузки. Следовательно, с некоторыми изменениями закона Ома, учитывающими влияние реактивного сопротивления, его можно применять к цепям переменного тока. Из-за индуктивности и емкости в переменном токе будет значительный фазовый угол между напряжением и током. А также сопротивление переменному току называется импедансом и обозначается как Z.

Таким образом, закон Ома для цепей переменного тока задается как

E = IZ

I = E/Z

Z = E/I

Где E — напряжение в цепи переменного тока,

Все параметры в приведенном выше уравнении представлены в комплексной форме, которая включает фазовый угол. Подобно круговой диаграмме цепи постоянного тока, круговая диаграмма закона Ома для цепи переменного тока приведена ниже.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Пример закона Ома (цепи переменного тока)

Рассмотрим приведенную ниже схему, в которой нагрузка переменного тока (сочетание резистивной и индуктивной) подключена к источнику переменного тока 10 В, 60 Гц. Нагрузка имеет сопротивление 5 Ом и индуктивность 10 мГн.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Тогда значение импеданса нагрузки Z = R + jX L

Z = 5 + j (2∏ × f × L)

Z = 5+ j (2×3,14×60×10×10-3)

Z = 5 + j3,76 Ом или 6,26 Ом при фазовом угле -37,016

Ток, протекающий по цепи, равен

I = V/Z = 10/(5+ j3,76) = 1,597 А при фазовом угле -37,016

Для расчета параметров сети для подключения нагревателей вы можете воспользоваться данными в данной статье основными формулами, или же просто позвоните нашим специалистам компании Термоэлемент по телефону и получите полную бесплатную консультацию и помощь с выбором нужных параметров нагревателей для вашей задачи по нагреву.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *