Область допустимых значений
Область допустимых значений алгебраического выражения (сокращенно ОДЗ) — это множество значений переменной, при которых это выражение определено.
В школьном курсе алгебры есть всего пять элементарных функций, которые имеют ограниченную область определения. Вот они:
1. ОДЗ:
Выражение, стоящее под знаком корня четной кратности, должно быть больше или равно нулю.
2. ОДЗ:
Выражение, стоящее в знаменателе дроби, не может быть равно нулю.
3. ОДЗ:
Выражение, стоящее под знаком логарифма, должно быть строго больше нуля; выражение, стоящее в основании логарифма должно быть строго больше нуля и отлично от единицы.
4. , ОДЗ:
5. Есть две функции, которые содержат «скрытую» дробь:
и
6. ОДЗ:
Степень корня — натуральное число, отличное от 1.
Таким образом, функции и имеют разную область определения.
Если выражение содержит одну или несколько функций, которые определены на ограниченном множестве значений аргумента, то для того, чтобы найти ОДЗ выражения, нужно учесть все ограничения, которые накладываются этими функциями.
Чтобы найти область допустимых значений выражения, нужно исследовать, присутствуют ли в выражении функции, которые я перечислила выше. И по мере обнаружения этих функций, записывать задаваемые ими ограничения, двигаясь «снаружи» «внутрь».
Поясню на примере:
Найти область определения функции:
Чтобы найти область определения функции, нужно найти область допустимых значений выражения, которое стоит в правой части уравнения функции
Я специально выбрала «страшную», на первый взгляд, функцию, чтобы показать вам, на какие простые операции разбивается процесс нахождения области допустимых значений.
«Просканируем» выражение, стоящее в правой части равенства:
1. Мы видим дробь:
Знаменатель дроби не равен нулю. Записываем:
2. Мы видим в знаменателе логарифм:
Выражение, стоящее под знаком логарифма должно быть строго больше нуля; выражение, стоящее в основании логарифма должно быть строго больше нуля и отлично от единицы.
3.Мы видим квадратный корень:
Выражение, стоящее под знаком корня четной кратности, должно быть больше или равно нулю.
Теперь запишем все ограничения в систему неравенств:
Решение этой системы неравенств посмотрите в ВИДЕУРОКЕ:
Для вас другие записи этой рубрики:
- Иррациональность в знаменателе
- Выделение полного квадрата под корнем
- Видеотека. Обыкновенные дроби
- Умножение, деление и сокращение алгебраических дробей
- Разложение многочлена на множители методом неопределенных коэффициентов
- Формулы сокращенного умножения
ОДЗ. Область допустимых значений
Часто в задачах бывает очень важно учесть ОДЗ и «вычеркнуть» те решения, которые на самом деле решениями не являются.
Иначе ты сделаешь глупую, очень глупую ошибку и не получишь то, что заслужил на ЕГЭ!
Читай эту статью и ты будешь знать об ОДЗ все!
ОДЗ — коротко о главном
ОДЗ – это область допустимых значений, то есть это все значения переменной, при которых выражение имеет смысл.
Функции, для которых важна ОДЗ:
Тип функции | ОДЗ |
---|---|
Обратная зависимость | \( \displaystyle y=\frac:\text< >x\ne 0\). |
Корень | \( \displaystyle \sqrt=y:\text< >\left\< \beginx\ge 0;\\y\ge 0.\end \right.\) |
Показательная функция | \( \displaystyle ^>=z:\text< >\left\< \beginy>0;\\z>0.\end \right.\) |
Логарифмическая функция | \( \displaystyle <<\log >_>y=a:\text< >\left\< \beginx>0;\\x\ne 1;\\y>0.\end \right.\) |
Тригонометрические функции | \( \displaystyle -1\le \sin x\le 1;\)\( \displaystyle -1\le \cos x\le 1;\)\[y = <\mathop<\rm tg>\nolimits> x:>x \ne \frac<\pi > + \pi n,>n \in \mathbb;\]\[y = <\mathop<\rm ctg>\nolimits> x:>x \ne \pi n,>n \in \mathbb>\] |
ОДЗ (Область допустимых значений) — подробнее
Давай разберем пример, наглядно показывающий, что такое ОДЗ:
Решим уравнение \( \displaystyle \sqrt=x\).
Все очень просто, если ты уже освоил тему «Иррациональные уравнения».
Возводим левую и правую части уравнения в квадрат:
Теперь решаем квадратное уравнение. Я воспользуюсь теоремой Виета (если забыл, что это такое, – посмотри тему «Квадратные уравнения»).
Вроде все? А давай-ка теперь сделаем проверку – подставим полученные значения в начальное уравнение:
\( \displaystyle x=3:\text< >\sqrt=3\text< >\Leftrightarrow \text< >\sqrt=3\) – все верно.
\( \displaystyle x=-1:\text< >\sqrt=-1\text< >\Leftrightarrow \text< >\sqrt=-1\) – неверно! А все почему?
Да потому, что мы не учли ОДЗ!
По определению квадратный корень из любого числа не может быть отрицательным.
Значит, глядя на уравнение \( \displaystyle \sqrt=x\) мы должны сразу же написать:
Если помнишь тему «Иррациональные уравнения», ты сразу скажешь, что второе условие в этой системе писать необязательно. И правда, мы ведь потом возведем все в квадрат, и получится, что \( \displaystyle 2x+3=^>\), а значит – автоматически неотрицательно.
Итак, с помощью этих рассуждений приходим к такой области допустимых значений:
\( \displaystyle x\ge 0\).
Тогда сразу становится ясно, что корень \( \displaystyle x=-1\) не подходит. И остается единственный ответ \( \displaystyle x=3\).
Всего мы изучаем несколько разных функций, для которых важна ОДЗ. Вот они со своими ОДЗ в удобной табличке.
Область допустимых значений (ОДЗ): теория, примеры, решения
Любое выражение с переменной в алгебре (математике) имеет свою область допустимых значений (или ОДЗ), где оно существует. ОДЗ — это то, что необходимо всегда учитывать при решении. При его отсутствии можно получить неверный результат.
В данной статье будет показано, как найти ОДЗ (ОДЗ логарифма, ОДЗ корня), использовать на примерах
(без необходимости искать готовые решения онлайн). Также будет рассмотрена важность указания ОДЗ при решении домашних заданий, гдз и прочих случаях.
Допустимые и недопустимые значения переменных
Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.
Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.
Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1 : а , если а = 0 , тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут подробно ответ. Иначе говоря, имеют смысл с имеющимися переменными.
Определение 1
Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.
Определение 2
Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.
То есть отсюда можно уже определять более полно
Определение 3
Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.
Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.
Для примера рассмотрим выражение вида 1 x — y + z , где имеются три переменные. Иначе можно записать, как x = 0 , y = 1 , z = 2 , другая же запись имеет вид ( 0 , 1 , 2 ) . Данные значения называют допустимыми, значит, можно найти значение выражения. Получим, что 1 0 — 1 + 2 = 1 1 = 1 . Отсюда видим, что ( 1 , 1 , 2 ) недопустимы. Подстановка дает в результате деление на ноль, то есть 1 1 — 2 + 1 = 1 0 .
Что такое ОДЗ?
Область допустимых значений – важный элемент при вычислении алгебраических выражений. Поэтому стоит обратить на это внимание при расчетах.
Определение 4
Область ОДЗ – это множество значений, допустимых для данного выражения.
Рассмотрим на примере выражения.
Если имеем выражение вида 5 z — 3 , тогда ОДЗ имеет вид ( − ∞ , 3 ) ∪ ( 3 , + ∞ ) . Эта область допустимых значений, удовлетворяющая переменной z для заданного выражения.
Если имеется выражения вида z x — y , тогда видно, что x ≠ y , z принимает любое значение. Это и называют ОДЗ выражения. Его необходимо учитывать, чтобы не получить при подстановке деление на ноль.
Область допустимых значений и область определения имеет один и тот же смысл. Только второй из них используется для выражений, а первый – для уравнений или неравенств. При помощи ОДЗ выражение или неравенство имеет смысл. Область определения функции совпадает с областью допустимых значений переменной х к выражению f ( x ) .
Как найти ОДЗ? Примеры, решения
Поиск определенного ОДЗ означает поиск всех допустимых значений, подходящих для заданной функции или неравенства. При невыполнении этих условий можно получить неверный результат. Как находить ОДЗ? Для нахождения ОДЗ зачастую необходимо пройти через преобразования в заданном выражении.
Как решать ОДЗ? Существуют выражения, где их вычисление невозможно:
- если имеется деление на ноль;
- извлечение корня из отрицательного числа;
- наличие отрицательного целого показателя – только для положительных чисел;
- вычисление логарифма отрицательного числа;
- область определения тангенса π 2 + π · k , k ∈ Z и котангенса π · k , k ∈ Z ;
- нахождение значения арксинуса и арккосинуса числа при значении, не принадлежащем [ — 1 ; 1 ] .
Все это говорит о том, как важно наличие ОДЗ.
Найти ОДЗ выражения x 3 + 2 · x · y − 4 .
Решение
В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.
Ответ: x и y – любые значения.
Найти ОДЗ выражения 1 3 — x + 1 0 .
Решение
Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.
Ответ: ∅ .
Найти ОДЗ заданного выражения x + 2 · y + 3 — 5 · x .
Решение
Наличие квадратного корня (квадрат корня) говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x + 2 · y + 3 ≥ 0 . То есть это и есть искомая область допустимых значений.
Ответ: множество x и y , где x + 2 · y + 3 ≥ 0 .
Определить ОДЗ выражения вида 1 x + 1 — 1 + log x + 8 ( x 2 + 3 ) .
Решение
По условию имеем дробь, поэтому ее знаменатель не должен равняться нулю. Получаем, что x + 1 — 1 ≠ 0 . Выражение под корнем всегда имеет смысл, когда больше или равно нулю, то есть x + 1 ≥ 0 . Так как имеет логарифм, то его выражение должно быть строго положительным, то есть x 2 + 3 > 0 . Основание логарифма также должно иметь положительное значение и отличное от 1 , тогда добавляем еще условия x + 8 > 0 и x + 8 ≠ 1 . Отсюда следует, что искомое ОДЗ примет вид:
x + 1 — 1 ≠ 0 , x + 1 ≥ 0 , x 2 + 3 > 0 , x + 8 > 0 , x + 8 ≠ 1
Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [ − 1 , 0 ) ∪ ( 0 , + ∞ ) .
Ответ: [ − 1 , 0 ) ∪ ( 0 , + ∞ )
Почему важно учитывать ОДЗ при проведении преобразований?
При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.
- могут не влиять на ОДЗ;
- могут привести к расширению или дополнению ОДЗ;
- могут сузить ОДЗ.
Рассмотрим на примере.
Если имеем выражение вида x 2 + x + 3 · x , тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.
Если взять пример выражения x + 3 x − 3 x , то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) . Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.
Рассмотрим пример с наличием подкоренного выражения.
Если имеется x — 1 · x — 3 , тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства ( x − 1 ) · ( x − 3 ) ≥ 0 . Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид ( − ∞ , 1 ] ∪ [ 3 , + ∞ ) . После преобразования x — 1 · x — 3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x — 1 ≥ 0 , x — 3 ≥ 0 . При ее решении получаем, что [ 3 , + ∞ ) . Значит, ОДЗ полностью записывается так: ( − ∞ , 1 ] ∪ [ 3 , + ∞ ) .
Нужно избегать преобразований, которые сужают ОДЗ.
Рассмотрим пример выражения x — 1 · x — 3 , когда х = — 1 . При подстановке получим, что — 1 — 1 · — 1 — 3 = 8 = 2 2 . Если это выражение преобразовать и привести к виду x — 1 · x — 3 , тогда при вычислении получим, что 2 — 1 · 2 — 3 выражение смысла не имеет, так как подкоренное выражение не должно быть отрицательным.
Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.
Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.
Рассмотрим на примере дроби вида x x 3 + x . Если сократить на x , тогда получаем, что 1 x 2 + 1 . Тогда ОДЗ расширяется и становится ( − ∞ 0 ) ∪ ( 0 , + ∞ ) . Причем при вычислении уже работаем со второй упрощенной дробью.
В случае нахождения ОДЗ для логарифмов дело обстоит немного иначе. Вот пример нахождения ОДЗ для логарифма.
Если имеется выражение вида ln x + ln ( x + 3 ) , его заменяют на ln ( x · ( x + 3 ) ) , опираясь на свойство логарифма. Отсюда видно, что ОДЗ с ( 0 , + ∞ ) до ( − ∞ , − 3 ) ∪ ( 0 , + ∞ ) . Поэтому для определения ОДЗ ln ( x · ( x + 3 ) ) необходимо производить вычисления на ОДЗ, то есть ( 0 , + ∞ ) множества.
При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.
Какое одз у корня
Найти ОДЗ — область допустимых значений — задание, которое в алгебре встречается как в виде самостоятельных примеров, так и при решении уравнений, неравенств и их систем.
ОДЗ многочлена — любое значение переменной.
Дробь имеет смысл, если знаменатель отличен от нуля.
Следовательно, ОДЗ дроби — все значения переменной, за исключением тех, в которых знаменатель обращается в нуль.
Выражение, стоящее под знаком корня чётной степени (в том числе, под знаком квадратного корня), должно быть неотрицательным.
Следовательно, ОДЗ выражения, содержащего переменную под знаком корня чётной степени — все значения переменной, при которых это выражение больше либо равно нуля.
0\\ g(x) > 0\\ g(x) \ne 1 \end{array} \right.\]» width=»218″ height=»65″ />
Выражение, стоящее под знаком логарифма, должно быть положительным.
Выражение, стоящее в основании логарифма, должно быть положительным и не равным единице.
Выражение, стоящее под знаком синуса, может принимать любые значения (ОДЗ синуса — любые значения переменной).
Выражение, стоящее под знаком косинуса, может принимать любые значения (ОДЗ косинуса — любые значения переменной).
ОДЗ тангенса можно рассматривать как ОДЗ дроби
ОДЗ котангенса находим как ОДЗ дроби
Выражение, стоящее под знаком арксинуса, должно быть не меньшим -1 и не большим 1 (то есть ОДЗ арксинуса — промежуток [-1;1]).
Выражение, стоящее под знаком арккосинуса, должно быть не меньшим -1 и не большим 1 (ОДЗ арккосинуса — промежуток [-1;1]).
Выражение, стоящее под знаком арктангенса, может принимать любые значения (ОДЗ арктангенса — любые значения f(x)).
Выражение, стоящее под знаком арккотангенса, может принимать любые значения (ОДЗ арккотангенса — любые значения f(x)).